精英家教網 > 高中數學 > 題目詳情
在△ABC中,三個內角A,B,C所對的邊為a,b,c,且
b
2
 
=
a
2
 
-ac+
c
2
 
,C-A=90°,則cosAcosC
=(  )
分析:根據余弦定理,結合已知條件邊的平方關系可得B=60°,再由三角形內角和定理結合C-A=90°,解得A=15°,C=105°.由此結合特殊角的三角函數值及和與差的余弦公式公式,不難算出cosAcosC的值.
解答:解:∵在△ABC中,
b
2
 
=
a
2
 
-ac+
c
2
 

∴cosB=
a2+c2-b2
2ac
=
ac
2ac
=
1
2

結合B∈(0°,180°),得B=60°
∵C-A=90°,C+A=180°-B=120°
∴C=105°,A=15°,
得cosA=cos(45°-30°)=
6
+
2
4
,cosC=cos(45°++60°)=
2
-
6
4

∴cosAcosC=
6
+
2
4
2
-
6
4
=-
1
4

故選:B
點評:本題在△ABC中,已知邊的平方關系和兩角之差,求兩個角的余弦之積,著重考查了運用余弦定理解三角形、兩角和與差的余弦公式和特殊角的三角函數值等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

8、對于直角坐標平面內的任意兩點A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:||AB||=|x2-x1|+|y2-y1|.給出下列三個命題:
①若點C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90o,則||AC||2+||CB||2=||AB||2
③在△ABC中,||AC||+||CB||>||AB||.
其中真命題的個數為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

△ABC中,三個內角A、B、C所對的邊分別為a、b、c,設復數z=sinA(sinA-sinC)+(sin2B-sin2C)i,且z在復平面內所對應的點在直線y=x上.
(1)求角B的大;
(2)若sinB=cosAsinC,△ABC的外接圓的面積為4π,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于直角坐標平面內的任意兩點A(x1,y1)、B(x2,y2),定義它們之間的一種“距離”:‖AB‖=|x1-x2|+|y1-y2|.給出下列三個命題:
①若點C在線段AB上,則‖AC‖+‖CB‖=‖AB‖;
②在△ABC中,若∠C=90°,則‖AC‖+‖CB‖=‖AB‖;
③在△ABC中,‖AC‖+‖CB‖>‖AB‖.
其中真命題的個數為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

①“若x+y=0,則x,y互為相反數”的逆命題是“若x,y互為相反數,則x+y=0”.
②在平面內,F1、F2是定點,|F1F2|=6,動點M滿足||MF1|-|MF2||=4,則點M的軌跡是雙曲線.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數列”的充要條件.
④“若-3<m<5則方程
x2
5-m
+
y2
m+3
=1
是橢圓”.
⑤在四面體OABC中,
OA
=
a
OB
=
b
OC
=
c
,D為BC的中點,E為AD的中點,則
OE
=
1
2
a
+
1
4
b
+
1
4
c

⑥橢圓
x2
25
+
y2
9
=1
上一點P到一個焦點的距離為5,則P到另一個焦點的距離為5.
其中真命題的序號是:
①②③⑤⑥
①②③⑤⑥

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

△ABC中,三個內角A、B、C所對的邊分別為a、b、c,設復數z=sinA(sinA-sinC)+(sin2B-sin2C)i,且z在復平面內所對應的點在直線y=x上.
(1)求角B的大;
(2)若sinB=cosAsinC,△ABC的外接圓的面積為4π,求△ABC的面積.

查看答案和解析>>

同步練習冊答案