【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長(zhǎng),“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語(yǔ)言描述:在羨除中,,,,,兩條平行線與間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,e是自然對(duì)數(shù)的底,)
(1)討論的單調(diào)性;
(2)若,是函數(shù)的零點(diǎn),是的導(dǎo)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為:為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線l的極坐標(biāo)方程為,.
將圓C的參數(shù)方程化為極坐標(biāo)方程;
設(shè)點(diǎn)A的直角坐標(biāo)為,射線l與圓C交于點(diǎn)不同于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的焦距為,短半軸的長(zhǎng)為2,過(guò)點(diǎn)P(-2,1)且斜率為1的直線l與橢圓C交于A,B兩點(diǎn).
(1)求橢圓C的方程;
(2)求弦AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)安排4名畢業(yè)生到某企業(yè)的三個(gè)部門(mén)實(shí)習(xí),要求每個(gè)部門(mén)至少安排1人,其中甲大學(xué)生不能安排到部門(mén)工作,安排方法有______種用數(shù)字作答.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷(xiāo)售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)50元;未售出的產(chǎn)品,每盒虧損30元根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示,該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了160盒該產(chǎn)品,以單位:盒,表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,單位:元表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷(xiāo)該產(chǎn)品的利潤(rùn)
根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量x的平均數(shù)和眾數(shù);
將y表示為x的函數(shù);
根據(jù)直方圖估計(jì)利潤(rùn)不少于4800元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的離心率為,右準(zhǔn)線方程為,、分別是橢圓的左、右頂點(diǎn),過(guò)右焦點(diǎn)且斜率為的直線與橢圓相交于,兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)記、的面積分別為、,若,求的值;
(3)設(shè)線段的中點(diǎn)為,直線與右準(zhǔn)線相交于點(diǎn),記直線、、的斜率分別為、、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為空間中三條互相平行且兩兩間的距離分別為4、5、6的直線,給出下列三個(gè)結(jié)論:
①存在使得是直角三角形;
②存在使得是等邊三角形;
③三條直線上存在四點(diǎn)使得四面體為在一個(gè)頂點(diǎn)處的三條棱兩兩互相垂直的四面體,其中,所有正確結(jié)論的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)且 )曲線的參數(shù)方程為(為參數(shù),且),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為: ,曲線的極坐標(biāo)方程為.
(1)求與的交點(diǎn)到極點(diǎn)的距離;
(2)設(shè)與交于點(diǎn),與交于點(diǎn),當(dāng)在上變化時(shí),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com