在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,已知向量,,.
(1)求角C的大; (2)若,求角A的值.
(1);(2)
解析試題分析:解題思路:(1)利用平面向量的垂直的判定得出三角形的三邊的關(guān)系式,在利用余弦定理求角;(2)利用三角形的三角關(guān)系進(jìn)行消元,使其變?yōu)殛P(guān)于角A的式子,再恒等變形求角的正弦值,結(jié)合角的范圍求角.規(guī)律總結(jié):對(duì)于以平面向量為載體考查三角函數(shù)問題,要正確利用平面向量知識(shí)化為三角函數(shù)關(guān)系式,再利用三角函數(shù)的有關(guān)公式進(jìn)行變形.
注意點(diǎn):利用三角函數(shù)值求角時(shí),一定要結(jié)合角所在的范圍求角.
試題解析:(1) 由
整理得
即
又
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f4/a/1t5zx3.png" style="vertical-align:middle;" />,
所以
(2) 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bc/f/1xc7d4.png" style="vertical-align:middle;" />,所以
故
由
即,
所以.
即.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c4/0/1bu6b3.png" style="vertical-align:middle;" />
故
所以
考點(diǎn):1.平面向量垂直的判定;2余弦定理;3.三角恒等變換.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知b=3,c=8,角A為銳角,△ABC的面積為6.
(1)求角A的大小;
(2)求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在銳角△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且.
(1)確定角C的大。
(2)若c=,且△ABC的面積為,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
如圖,某公司要在兩地連線上的定點(diǎn)處建造廣告牌,其中為頂端,長35米,長80米,設(shè)在同一水平面上,從和看的仰角分別為.
(1)設(shè)計(jì)中是鉛垂方向,若要求,問的長至多為多少(結(jié)果精確到0.01米)?
(2)施工完成后.與鉛垂方向有偏差,現(xiàn)在實(shí)測得求的長(結(jié)果精確到0.01米)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com