6.已知隨機(jī)變量X+Y=10,若X~B(10,0.6),則E(Y),D(Y)分別是( 。
A.6和2.4B.4和5.6C.4和2.4D.6和5.6

分析 先由X~B(10,0.6),得均值E(X)=6,方差D(X)=2.4,然后由X+Y=10得Y=-X+10,再根據(jù)公式求解即可.

解答 解:由題意X~B(10,0.6),知隨機(jī)變量X服從二項分布,n=10,p=0.6,
則均值E(X)=np=6,方差D(X)=npq=2.4,
又∵X+Y=10,
∴Y=-X+10,
∴E(Y)=-E(X)+10=-6+10=4,
D(Y)=D(X)=2.4.
故選:C.

點評 解題關(guān)鍵是若兩個隨機(jī)變量Y,X滿足一次關(guān)系式Y(jié)=aX+b(a,b為常數(shù)),當(dāng)已知E(X)、D(X)時,則有E(Y)=aE(X)+b,D(Y)=a2D(X).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$cos({α-\frac{π}{3}})=-\frac{1}{2}$,則$sin({\frac{π}{6}+α})$的值等于( 。
A.$\frac{\sqrt{3}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)=|x-b|+|x+b|.
(1)當(dāng)b=1時,求f(x)≤x+2的解集;
(2)當(dāng)x=1時,若不等式f(x)≥$\frac{|a+1|-|2a-1|}{|a|}$對任意實數(shù)a≠0恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點A,B的坐標(biāo)分別為(-$\sqrt{2}$,0),($\sqrt{2}$,0),直線AM,BM相交于點M,且它們的斜率之積是-$\frac{1}{2}$,點M的軌跡為曲線E.
(Ⅰ)求E的方程;
(Ⅱ)過點F(1,0)作直線l交曲線E于P,Q兩點,交y軸于R點,若$\overrightarrow{RP}$=λ1$\overrightarrow{PF}$,$\overrightarrow{RQ}$=λ2$\overrightarrow{QF}$,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c)(其中a>1,b>1),x=0是f(x)的一個零點,曲線y=f(x)在點(1,f(1))處的切線平行于x軸,則a+b的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.2017年是某市大力推進(jìn)居民生活垃圾分類的關(guān)鍵一年,有關(guān)部門為宣傳垃圾分類知識,面向該市市民進(jìn)行了一次“垃圾分類知識”的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機(jī)會,通過抽樣,得到參與問卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖所示:

(1)由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布N(μ,210),μ近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P(50.5<Z<94).
(2)在(1)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎勵方案:
①得分不低于μ可獲贈2次隨機(jī)話費,得分低于μ則只有1次;
②每次贈送的隨機(jī)話費和對應(yīng)概率如下:
贈送話費(單位:元)1020
概率$\frac{2}{3}$ $\frac{1}{3}$ 
現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求X的分布列.
附:$\sqrt{210}$≈14.5
若Z~N(μ,δ2),則P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右頂點為A(2,0),左、右焦點分別為F1、F2,過點A且斜率為$\frac{1}{2}$的直線與y軸交于點P,與橢圓交于另一個點B,且點B在x軸上的射影恰好為點F1
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點P且斜率大于$\frac{1}{2}$的直線與橢圓交于M,N兩點(|PM|>|PN|),若S△PAM:S△PBN=λ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題“?x>1,${(\frac{1}{2})^x}<\frac{1}{2}$”的否定是( 。
A.?x>1,${(\frac{1}{2})^x}≥\frac{1}{2}$B.?x≤1,${(\frac{1}{2})^x}≥\frac{1}{2}$C.?x0>1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$D.?x0≤1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,直角梯形ABCD兩條對角線AC,BD的交點為O,四邊形OBEF為矩形,平面OBEF⊥平面ABCD,M為線段AB上一點,AM=2MB,且AB⊥BC,AB∥CD,AB=BE=6,CD=BC=3.
(I)求證:EM∥平面ADF;
(Ⅱ)求二面角O-EF-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案