計(jì)算:
cos(3π-α)tan(5π+α)
sin(3π+α)
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)求值.
解答: 解:原式=
-cosαtanα
-sinα
=
cosα
sinα
cosα
sinα
=1.
點(diǎn)評(píng):本題考查了利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)三角函數(shù)式;關(guān)鍵是熟記誘導(dǎo)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)下面四個(gè)命題:
①若A、B、U為集合,A⊆U,B⊆U,A∩B=A,則∁UA⊆∁UB;
②二項(xiàng)式(2x-
1
x2
6的展開式中,其常數(shù)項(xiàng)是240;
③對(duì)直線l、m,平面α、β,若l∥α,l∥β,α∩β=m,則l∥m;
④函數(shù)y=(x+1)2+1,(x≥0)與函數(shù)y=-1+
x-1
,(x≥1)互為反函數(shù).
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,E為PC的中點(diǎn),底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2
(1)求證:BE∥平面PAD;
(2)求證:平面PBC⊥平面PBD;
(3)設(shè)Q為棱PC上一點(diǎn),
PQ
PC
,試確定λ的值使得二面角Q-BD-P為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面說法中,正確的是( 。
①一個(gè)平面內(nèi)只有一對(duì)不共線向量可作為表示該平面內(nèi)所有向量的基底;
②一個(gè)平面內(nèi)由無數(shù)多對(duì)不共線向量可作為表示該平面內(nèi)所有向量的基底;
③零向量不可作為基底中的向量;
④對(duì)于平面內(nèi)的任一向量
a
和一組基底
e1
,
e2
,使
a
e1
e2
成立的實(shí)數(shù)對(duì)一定是唯一的.
A、②④B、②③④
C、①③D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln
kx-1
x+1
(k>0)為奇函數(shù).
(I)求常數(shù)k的值;
(Ⅱ)求證:函數(shù)f(x)在(-∞,-1)上是增函數(shù);
(Ⅲ)若函數(shù)g(x)=f(x)+2x+m,且g(x)在區(qū)間[3,4]上沒有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為北京市2001年到2013年人均生活用水量和常住人口的情況:

(Ⅰ)比較前6年與后7年人均生活用水量的平均值的大;(不要求計(jì)算過程)
(Ⅱ)若從這13年中隨機(jī)選擇連續(xù)的三年進(jìn)行觀察,求所選的這三年的人均用水量恰是依次遞減的概率;(Ⅲ)由圖判斷從哪年開始連續(xù)四年的常住人口的方差最大?并結(jié)合兩幅圖表推斷北京市在2010至2013四年間的總生活用水量的增減情況.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2acos(k+1)π•lnx(k∈N*,a∈R且a>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若k=2015,方程f (x)=2a x有惟一解時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從數(shù)字1,2,3中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),則這個(gè)兩位數(shù)大于30的概率為( 。
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3(10x+
1
10x
-2),則f(x)的值域?yàn)椋ā 。?/div>
A、(-∞,-3)
B、(-3,3)
C、[0,+∞)
D、(-∞,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案