【題目】如圖,在四棱錐P-ABCD中,, ,, PA=AB=BC=2. EPC的中點.

1)證明:

2)求三棱錐P-ABC的體積;

3 證明:平面

【答案】1)證明見解析;(2;(3)證明見解析.

【解析】

1)證明PA⊥平面ABCD, PACD即得證;(2)直接利用三棱錐的體積公式求解;(3)先證明AE⊥PC, CD⊥AE,平面即得證.

1)因為, 平面ABCD,

所以PA⊥平面ABCD, 因為平面ABCD,

所以PACD.

2)因為PA⊥平面ABCD,所以PA是三棱錐P-ABC的高,

所以.

3)因為, AB=BC=2.

所以AC=PA=2,

因為E是PC的中點,

所以AE⊥PC.

因為CD⊥AC,AP⊥CD,平面APC,

所以CD⊥平面PAC,

所以CD⊥AE.

因為平面PCD,

所以AE⊥平面PCD.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列中,,且對任意,都有

1)計算,,由此推測的通項公式,并用數(shù)學歸納法證明;

2)若),求無窮數(shù)列的前項之和的最大項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標系,曲線.

(1)求的普通方程和的直角坐標方程;

(2)若曲線交于,兩點,,的中點為,點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個小時抽取一件產(chǎn)品并對其某個質(zhì)量指標進行檢測,一共抽取了件產(chǎn)品,并得到如下統(tǒng)計表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護次數(shù)與指標有關(guān),具體見下表.

質(zhì)量指標

頻數(shù)

一年內(nèi)所需維護次數(shù)

(1)以每個區(qū)間的中點值作為每組指標的代表,用上述樣本數(shù)據(jù)估計該廠產(chǎn)品的質(zhì)量指標的平均值(保留兩位小數(shù));

(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再從件產(chǎn)品中隨機抽取件產(chǎn)品,求這件產(chǎn)品的指標都在內(nèi)的概率;

(3)已知該廠產(chǎn)品的維護費用為元/次,工廠現(xiàn)推出一項服務:若消費者在購買該廠產(chǎn)品時每件多加元,該產(chǎn)品即可一年內(nèi)免費維護一次.將每件產(chǎn)品的購買支出和一年的維護支出之和稱為消費費用.假設(shè)這件產(chǎn)品每件都購買該服務,或者每件都不購買該服務,就這兩種情況分別計算每件產(chǎn)品的平均消費費用,并以此為決策依據(jù),判斷消費者在購買每件產(chǎn)品時是否值得購買這項維護服務?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠BAD60°,PAPDAD2,點M在線段PC上,且PM2MCNAD的中點.

1)求證:AD⊥平面PNB;

2)若平面PAD⊥平面ABCD,求三棱錐PNBM的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體,,,均垂直于平面ABC,.

(Ⅰ)證明:平面;

(Ⅱ)求直線與平面所成的角的余弦值;

(Ⅲ)求平面與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著人民生活水平的日益提高,某小區(qū)居民擁有私家車的數(shù)量與日俱增.由于該小區(qū)建成時間較早,沒有配套建造地下停車場,小區(qū)內(nèi)無序停放的車輛造成了交通的擁堵.該小區(qū)的物業(yè)公司統(tǒng)計了近五年小區(qū)登記在冊的私家車數(shù)量(累計值,如124表示2016年小區(qū)登記在冊的所有車輛數(shù),其余意義相同),得到如下數(shù)據(jù):

編號

1

2

3

4

5

年份

2014

2015

2016

2017

2018

數(shù)量(單位:輛)

34

95

124

181

216

(1)若私家車的數(shù)量與年份編號滿足線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預測2020年該小區(qū)的私家車數(shù)量;

(2)小區(qū)于2018年底完成了基礎(chǔ)設(shè)施改造,劃設(shè)了120個停車位,為解決小區(qū)車輛亂停亂放的問題,加強小區(qū)管理,物業(yè)公司決定禁止無車位的車輛進入小區(qū),由于車位有限,物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競拍的方式將車位對業(yè)主出租,租期一年,競拍方案如下:

①截至2018年已登記在冊的私家車業(yè)主擁有競拍資格;

②每車至多申請一個車位,由車主在競拍網(wǎng)站上提出申請并給出自己的報價;

③根據(jù)物價部門的規(guī)定,競價不得超過1200元;

④申請階段截止后,將所有申請的業(yè)主報價自高到低排列,排在前120位的業(yè)主以其報價成交;

⑤若最后出現(xiàn)并列的報價,則以提出申請的時間在前的業(yè)主成交,為預測本:次競拍的成交最低價,物業(yè)公司隨機抽取了有競拍資格的40位業(yè)主進行競拍意向的調(diào)查,統(tǒng)計了他們的擬報競價,得到如下頻率分布直方圖:

(。┣笏槿〉臉I(yè)主中有意向競拍報價不低于1000元的人數(shù);

(ⅱ)如果所有符合條件的車主均參與競拍,利用樣木估計總體的思想,請你據(jù)此預測至少需要報價多少元才能競拍車位成功?(精確到整數(shù))

參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的中心在原點,焦點在軸上,離心率,它的一個頂點恰好是拋物線的焦點.

1)求橢圓的標準方程;

2)過坐標原點的直線交橢圓于兩點,在第一象限,軸,垂足為,連接延長交橢圓于點.

①求證:;

②求面積最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司在招聘員工時,要進行筆試,面試和實習三個過程.筆試設(shè)置了3個題,每一個題答對得5分,否則得0分.面試則要求應聘者回答3個問題,每一個問題答對得5分,否則得0分.并且規(guī)定在筆試中至少得到10分,才有資格參加面試,而筆試和面試得分之和至少為25分,才有實習的機會.現(xiàn)有甲去該公司應聘,假設(shè)甲答對筆試中的每一個題的概率為,答對面試中的每一個問題的概率為

1)求甲獲得實習機會的概率;

2)設(shè)甲在去應聘過程中的所得分數(shù)為隨機變量,求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案