14.在公比小于零的等比數(shù)列{an中,若a1=2,a3=8,這數(shù)列{an}的前三項(xiàng)和S3=6.

分析 利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q<0,∵a1=2,a3=8,
∴8=2×q2,解得q=-2.
∴這數(shù)列{an}的前三項(xiàng)和S3=2-4+8=6,
故答案為:6.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.平面內(nèi)有n(n∈N*)個(gè)圓中,每?jī)蓚(gè)圓都相交,每三個(gè)圓都不交于一點(diǎn),若該n個(gè)圓把平面分成f(n)個(gè)區(qū)域,那么f(n)=n2-n+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=|2x|,現(xiàn)將y=f(x)的圖象向右平移一個(gè)單位,再向上平移一個(gè)單位得到函數(shù)h(x)的圖象.
(1)求函數(shù)h(x)的解析式;
(2)函數(shù)y=h(x)的圖象與函數(shù)g(x)=kx2的圖象在$x∈[{\frac{1}{2},3}]$上至少有一個(gè)交點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知菱形ABCD的邊長(zhǎng)為2,求向量$\overrightarrow{AB}$-$\overrightarrow{CB}$+$\overrightarrow{CD}$的模的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,與函數(shù)f(x)=lnx有相同定義域的是( 。
A.f(x)=$\frac{1}{\sqrt{x}}$B.f(x)=$\sqrt{x}$C.f(x)=|x|D.f(x)=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.不等式|x+1|-|x-3|≥0的解集是( 。
A.[1,+∞)B.(-∞,-1]∪[1,+∞)C.[-1,3]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量 $\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(0,-1),$\overrightarrow{c}$=($\sqrt{3}$,k),若 $\overrightarrow{a}$-2$\overrightarrow$ 與 $\overrightarrow{c}$ 垂直,則 k=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a是實(shí)常數(shù),函數(shù)f(x)=xlnx+ax2
(1)若曲線y=f(x)在x=1處的切線過點(diǎn)A(0,-2),求實(shí)數(shù)a的值;
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),
①求證:-$\frac{1}{2}$<a<0;
②求證:f(x1)<0,f(x2)>-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,已知二面角α-l-β的大小是110°,PA⊥α,PB⊥β,則PA與平面β所成的角為20°

查看答案和解析>>

同步練習(xí)冊(cè)答案