在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為對(duì)數(shù)),求曲線截直線所得的弦長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題共10分)
在直角坐標(biāo)系中直線L過(guò)原點(diǎn)O,傾斜角為,在極坐標(biāo)系中(與直角坐標(biāo)系有相同的長(zhǎng)度單位,極點(diǎn)為原點(diǎn),極軸與x的非負(fù)半軸重合)曲線C:,
(1)求曲線C的直角坐標(biāo)方程;
(2)直線L與曲線C交于點(diǎn),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為,圓的參數(shù)方程為
(其中為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓上的點(diǎn)到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
選修4—4:坐標(biāo)系與參數(shù)方程
已知直線l經(jīng)過(guò)點(diǎn)P(1,1),傾斜角,
(1)寫(xiě)出直線l的參數(shù)方程。
(2)設(shè)l與圓相交與兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的單位長(zhǎng)度,已知直線經(jīng)過(guò)點(diǎn)P(1,1),傾斜角
(1)寫(xiě)出直線的參數(shù)方程;(2)設(shè)與圓相交與A,B,求點(diǎn)P到A,B兩點(diǎn)的距離積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知某圓的極坐標(biāo)方程為
(I)將極坐標(biāo)方程化為普通方程,并選擇恰當(dāng)?shù)膮?shù)寫(xiě)出它的參數(shù)方程;
(II)若點(diǎn)在該圓上,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
已知極坐標(biāo)系下曲線的方程為,直線經(jīng)過(guò)點(diǎn),傾斜角.
(Ⅰ)求直線在相應(yīng)直角坐標(biāo)系下的參數(shù)方程;
(Ⅱ)設(shè)與曲線相交于兩點(diǎn),求點(diǎn)到兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中以為極點(diǎn),軸正半軸為極軸建立坐標(biāo)系.圓,直線的極坐標(biāo)方程分別為.
(I)
(II)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com