【題目】已知函數(shù).
(1)求f(x)的最小正周期T和[0,π]上的單調(diào)增區(qū)間;
(2)若,求f(x)的最值及取最值時的x值.
【答案】(1),和;(2)時,函數(shù)取得最小值為; 時,f(x)取得最大值為
【解析】
(1)由題意利用三角恒等變換化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的周期性和單調(diào)性,求得的最小正周期和上的單調(diào)增區(qū)間.
(2)由題意利用正弦函數(shù)的定義域和值域,求出的最值及取最值時的值.
(1)∵函數(shù)sin2xcos2xsin(2x),
故它的最小正周期為 Tπ.
令 2kπ2x2kπ,求得kπx≤kπ,
可得函數(shù)的單調(diào)增區(qū)間為[kπ,kπ],k∈Z.
再根據(jù)x∈[0,
(2)若,則2x∈[,],
故當(dāng)2x 時,即x=0時,函數(shù)取得最小值為;
當(dāng)2x,即x時,f(x)取得最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),當(dāng)x>0時,f(x)=lnx-ax,若函數(shù)在定義域上有且僅有4個零點,則實數(shù)a的取值范圍是( )
A.(e,+∞)B.(0,)
C.(1,)D.(-∞,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天干地支紀(jì)年法,源于中國,中國自古便有十天干與十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀(jì)年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推,排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推,已知2016年為丙申年,那么到改革開放100年時,即2078年為________年
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面五邊形中,已知四邊形為正方形,為正三角形.沿著將四邊形折起得到四棱錐,使得平面平面,設(shè)在線段上且滿足,在線段上且滿足,為的重心,如圖(2).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ABCD是菱形,AC,BD相交于點O,EF∥AB,EFAB,平面BCF⊥平面ABCD,BF=CF,G為BC的中點,求證:
(1)OG∥平面ABFE;
(2)AC⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):
間隔時間/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進(jìn)行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求與實際等候人數(shù)的差,若差值的絕對值都不超過,則稱所求方程是“恰當(dāng)回歸方程”.
(1)從這組數(shù)據(jù)中隨機選取組數(shù)據(jù)后,求剩下的組數(shù)據(jù)的間隔時間不相鄰的概率;
(2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;
(3)為了使等候的乘客不超過人,試用(2)中方程估計間隔時間最多可以設(shè)置為多少(精確到整數(shù))分鐘.
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是梯形,,,是正三角形,為的中點,平面平面.
(1)求證:平面;
(2)在棱上是否存在點,使得二面角的余弦值為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:.
(Ⅰ)求直線與曲線公共點的極坐標(biāo);
(Ⅱ)設(shè)過點的直線交曲線于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是R上的偶函數(shù),對于都有成立,且,當(dāng),且時,都有.則給出下列命題:
①;
②函數(shù)圖象的一條對稱軸為;
③函數(shù)在[﹣9,﹣6]上為減函數(shù);④方程在[﹣9,9]上有4個根;
其中正確的命題序號是___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com