【題目】如圖(1),在平面五邊形中,已知四邊形為正方形,為正三角形.沿著將四邊形折起得到四棱錐,使得平面平面,設(shè)在線段上且滿足,在線段上且滿足的重心,如圖(2.

1)求證:平面

2)求直線與平面所成角的正弦值.

【答案】1)見解析;(2

【解析】

1)取的中點(diǎn)的中點(diǎn),連接,可知三點(diǎn)共線,三點(diǎn)共線.,因而可得的重心,再利用線面平行的判定,及可證出;

2)根據(jù)條件,通過面面垂直的性質(zhì),證出平面,建立空間直角坐標(biāo)系,標(biāo)點(diǎn),求及平面的法向量為,通過利用空間向量法求出線面角.

1)如圖,取的中點(diǎn),的中點(diǎn),連接.

由已知易得三點(diǎn)共線,三點(diǎn)共線.

因?yàn)?/span>,,所以.

的重心,所以,

所以.

因?yàn)?/span>平面平面,

所以平面.

2)在中,因?yàn)?/span>的中點(diǎn),所以.

因?yàn)槠矫?/span>平面,平面平面,平面

所以平面.

由(1)得,.

所以兩兩垂直,如圖,

分別以射線的方向?yàn)?/span>軸的正方向建立空間直角坐標(biāo)系.

設(shè),因?yàn)?/span>,所以,

所以.

所以,,,.

所以,.

設(shè)平面的法向量為,則

所以,則,所以可取.

設(shè)直線與平面所成的角為,則

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018614日,世界杯足球賽在俄羅斯拉開帷幕,世界杯給俄羅斯經(jīng)濟(jì)帶來了一定的增長(zhǎng),某紀(jì)念商品店的銷售人員為了統(tǒng)計(jì)世界杯足球賽期間商品的銷售情況,隨機(jī)抽查了該商品商店某天200名顧客的消費(fèi)金額情況,得到如圖頻率分布表:將消費(fèi)顧客超過4萬盧布的顧客定義為足球迷”,消費(fèi)金額不超過4萬盧布的顧客定義為“非足球迷”。

消費(fèi)金額/萬盧布

合計(jì)

顧客人數(shù)

9

31

36

44

62

18

200

(1)求這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)(同一組中的消費(fèi)金額用該組的中點(diǎn)值作代表;

(2)該紀(jì)念品商店的銷售人員為了進(jìn)一步了解這200名顧客喜歡紀(jì)念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再從這5人中隨機(jī)選取3人進(jìn)行問卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,已知底面ABCD是菱形,點(diǎn)P是側(cè)棱C1C的中點(diǎn).

1)求證:AC1∥平面PBD;

2)求證:BDA1P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)要設(shè)計(jì)制造一批大小、規(guī)格相同的長(zhǎng)方體封閉水箱,已知每個(gè)水箱的表面積為432(每個(gè)水箱的進(jìn)出口所占面積與制作材料的厚度均忽略不計(jì)).每個(gè)長(zhǎng)方體水箱的底面長(zhǎng)是寬的2倍.現(xiàn)設(shè)每個(gè)長(zhǎng)方體水箱的底面寬是,用表示每個(gè)長(zhǎng)方體水箱的容積.

(1)試求函數(shù)的解析式及其定義域;

(2)當(dāng)為何值時(shí),有最大值,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一種拋硬幣游戲的規(guī)則是:拋擲一枚硬幣,每次正面向上得1分,反面向上得2分.

(1)設(shè)拋擲5次的得分為,求的分布列和數(shù)學(xué)期望;

(2)求恰好得到分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求fx)的最小正周期T[0,π]上的單調(diào)增區(qū)間;

2)若,求fx)的最值及取最值時(shí)的x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是(

A.”是“”的充分不必要條件

B.為假命題,則,均為真命題

C.命題“若,則”的逆否命題是“若,則|”

D.若命題,使得,則,恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年非洲豬瘟在東北三省出現(xiàn),為了進(jìn)行防控,某地生物醫(yī)藥公司派出技術(shù)人員對(duì)當(dāng)?shù)丶滓覂蓚(gè)養(yǎng)殖場(chǎng)提供技術(shù)服務(wù),方案和收費(fèi)標(biāo)準(zhǔn)如下:

方案一,公司每天收取養(yǎng)殖場(chǎng)技術(shù)服務(wù)費(fèi)40元,對(duì)于需要用藥的每頭豬收取藥費(fèi)2元,不需要用藥的不收費(fèi);

方案二,公司每天收取養(yǎng)殖場(chǎng)技術(shù)服務(wù)費(fèi)120元,若需要用藥的豬不超過45頭,不另外收費(fèi),若需要用藥的豬超過45頭,超過部分每天收取藥費(fèi)8.

1)設(shè)日收費(fèi)為(單位:元),每天需要用藥的豬的數(shù)量為,試寫出兩種方案中 的函數(shù)關(guān)系式.

2)若該醫(yī)藥公司從101日起對(duì)甲養(yǎng)殖場(chǎng)提供技術(shù)服務(wù),1031日該養(yǎng)殖場(chǎng)對(duì)其中一個(gè)豬舍9月份和10月份豬的發(fā)病數(shù)量進(jìn)行了統(tǒng)計(jì),得到如下列聯(lián)表.

9月份

10月份

合計(jì)

未發(fā)病

40

85

125

發(fā)病

65

20

85

合計(jì)

105

105

210

根據(jù)以上列聯(lián)表,判斷是否有的把握認(rèn)為豬未發(fā)病與醫(yī)藥公司提供技術(shù)服務(wù)有關(guān).

附:

0.050

0.010

0.001

3.841

6.635

10.828

3)當(dāng)?shù)氐谋B(yǎng)殖場(chǎng)對(duì)過去100天豬的發(fā)病情況進(jìn)行了統(tǒng)計(jì),得到如上圖所示的條形統(tǒng)計(jì)圖.依據(jù)該統(tǒng)計(jì)數(shù)據(jù),從節(jié)約養(yǎng)殖成本的角度去考慮,若丙養(yǎng)殖場(chǎng)計(jì)劃結(jié)合以往經(jīng)驗(yàn)從兩個(gè)方案中選擇一個(gè),那么選擇哪個(gè)方案更合適,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案