A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{16}$ | D. | 4 |
分析 由已知先求出f(-1)=1,從而f(f(-1))=f(1),由此能求出結(jié)果.
解答 解:∵函數(shù)f(x)=$\left\{{\begin{array}{l}{\sqrt{-x}}&{(x<0)}\\{{{(x-\frac{1}{2})}^4}}&{(x>0)}\end{array}}$,
∴f(-1)=$\sqrt{-(-1)}$=1,
f(f(-1))=f(1)=(1-$\frac{1}{2}$)4=$\frac{1}{16}$.
故選:C.
點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在數(shù)列{an}中,a1=1,an=$\frac{1}{2}$(an-1+$\frac{1}{{a}_{n-1}}$)(n∈N*),由其歸納出{an}的通項公式 | |
B. | 由平面三角形的性質(zhì),推測空間四面體性質(zhì) | |
C. | 兩條直線平行,同旁內(nèi)角互補,如果∠A和∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180° | |
D. | 某校高二共10個班,1班51人,2班53人,3班52人,由此推測各班都超過50人 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{BD}$ | B. | $\overrightarrow{AC}$ | C. | $\overrightarrow 0$ | D. | $\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,3] | B. | [-1,3] | C. | (1,3] | D. | (-1,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | B. | (-$\frac{\sqrt{3}}{6}$,$\frac{\sqrt{3}}{6}$) | C. | (-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$) | D. | (-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com