函數(shù)定義在區(qū)間都有且不恒為零.
(1)求的值;
(2)若且求證:;
(3)若求證:在上是增函數(shù).
(1).(2)(3)見解析
解析試題分析:(1)通過帶特殊值可求得;(2)設,同取以為底的對數(shù)得,,把代入在運用對數(shù)運算性質(zhì)就可得,有,所以,要證只需證,由以上很容易得到,需要證出時,即等號不成立;(3)設,則,所以得時,,任取,得證.
試題解析:⑴令,,,
因為,所以. 3分
⑵設,則,所以
, 5分
因為,所以,所以,,
. 8分
下面證明當時,.
假設存在,,則對于任意,
,不合題意.所以,當時,.
因為,所以存在,
,
所以,所以. 10分
⑶設,則, 12分
設,為區(qū)間內(nèi)的任意兩個值,且,則,由⑵的證明知,
,
所以,所以在上是增函數(shù). 16分
考點:1.函數(shù)附特殊值法;2.函數(shù)的構(gòu)造法;3.證明單調(diào)函數(shù).
科目:高中數(shù)學 來源: 題型:解答題
遼寧號航母紀念章從2012年10月5日起開始上市.通過市場調(diào)查,得到該紀念章每1枚的市場價 (單位:元)與上市時間(單位:天)的數(shù)據(jù)如下:
上市時間天 | 4 | 10 | 36 |
市場價元 | 90 | 51 | 90 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn)是曲線C:y2=3x(y≥0)上的n個點,點Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標原點).
(1)寫出a1,a2,a3;
(2)求出點An(an,0)(n∈N*)的橫坐標an關(guān)于n的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)是奇函數(shù),(其中)
(1)求實數(shù)m的值;
(2)在時,討論函數(shù)f(x)的增減性;
(3)當x時,f(x)的值域是(1,),求n與a的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)
(1)若關(guān)于x的不等式在有實數(shù)解,求實數(shù)m的取值范圍;
(2)設,若關(guān)于x的方程至少有一個解,求p的最小值.
(3)證明不等式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
經(jīng)市場調(diào)查,某種商品在過去50天的銷售量和價格均為銷售時間t(天)的函數(shù),且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N).前30天價格為g(t)=t+30(1≤t≤30,t∈N),后20天價格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時間t的函數(shù)關(guān)系;
(2)求日銷售額S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com