1.已知tanα=$\frac{1}{2}$,計(jì)算
(1)sinαcosα
(2)$\frac{sinα-3cosα}{sinα+cosα}$.

分析 化簡所求表達(dá)式為正切函數(shù)的形式,然后求解函數(shù)值即可.

解答 解:(1)$sinαcosα=\frac{sinαcosα}{{{{sin}^2}α+{{cos}^2}α}}=\frac{tanα}{{{{tan}^2}α+1}}=\frac{2}{5}$;---------------------------------8'
(2)$\frac{sinα-3cosα}{sinα+cosα}$=$\frac{tanα-3}{tanα+1}$=$-\frac{5}{3}$;---------------------------7'

點(diǎn)評 本題考查三角函數(shù)的化簡求值,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=cos2x+(m-2)sinx+m,x∈R,m是常數(shù).
(1)當(dāng)m=1時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)$m=-\frac{7}{2}$時(shí),求方程f(x)=0的解集;
(3)若函數(shù)f(x)在區(qū)間$[{-\frac{π}{6},\frac{5π}{6}}]$上有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù){an}滿a1=0,an+1=an+2n,那a2016的值是(  )
A.2014×2015B.2015×2016C.2014×2016D.2015×2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=2sin({2x-\frac{π}{3}})$.
(1)用五點(diǎn)法畫出函數(shù)f(x)在一個(gè)周期上的簡圖,并求出y=f(x)圖象的對稱軸方程與對稱中心坐標(biāo);
(2)指出函數(shù)y=f(x)的圖象可以由y=sinx的圖象經(jīng)過哪些變換得到;
(3)當(dāng)x∈[0,m]時(shí),函數(shù)y=f(x)的值域?yàn)?[{-\sqrt{3},2}]$,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.閱讀如圖的程序框圖,若輸出的y=$\frac{1}{2}$,則輸入的x的值可能為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知一圓經(jīng)過點(diǎn)A(3,1),B(-1,3),且它的圓心在直線3x-y-2=0上.
(1)求此圓的方程;
(2)若點(diǎn)D為所求圓上任意一點(diǎn),且點(diǎn)C(3,0),求線段CD的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.給出下列五種說法:
(1)函數(shù)y=ax(a>0,a≠1)與函數(shù)y=x2的定義域相同;
(2)函數(shù)y=$\sqrt{x}$與函數(shù)y=lnx的值域相同;
(3)函數(shù)y=log3(x2-2x-3)的單調(diào)增區(qū)間是[1,+∞);
(4)記函數(shù)f(x)=x-[x](注:[x]表示不超過x的最大整數(shù),例如:[3.2]=3,[-2.3]=-3),則f(x)的值域是[0,1).
其中所有正確的序號是(1)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,$AB=\sqrt{3}$,BC=1,PA=2,求直線AC與PB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=3AB.
(Ⅰ)求證:平面ACE⊥平面CDE;
(Ⅱ)在線段DE上是否存在一點(diǎn)F,使AF∥平面BCE?若存在,求出$\frac{EF}{ED}$的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案