精英家教網 > 高中數學 > 題目詳情
若定義在R上的函數對任意的,都有立,且當時,。
(1)求證:為奇函數;
(2)求證:是R上的增函數;
(3)若,解不等式
解:(1)證明:定義在R上的函數對任意的,都成立。

,∴,∴為奇函數
(2)證明:由(1)知:為奇函數, ∴
任取,且,則

∵當時,,
,∴
是R上的增函數。
(3)解:∵,且
,由不等式,

由(2)知:是R上的增函數∴
∴不等式的解集為:
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

下列各組函數中,表示同一函數的是(  )
A.y=與yB.y=lnex與y=elnx
C.yyx+3D.yx0y

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數f(x)=ax+loga(x+1)在[0,1]上的最大值與最小值之和為a,則a的值為(   )
A.B.4C.D.2a

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)已知二次函數
(1)若a>b>c, 且f(1)=0,證明fx)的圖象與x軸有2個交點;
(2)若 對,方程有2個不等實根,
(3)在(1)的條件下,是否存在m∈R,使fm)=a成立時,fm+3)為正數,若
存在,證明你的結論,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)某地有三個村莊,分別位于等腰直角三角形ABC的三個頂點處,已知AB=AC=6km,現計劃在BC邊的高AO上一點P處建造一個變電站.記P到三個村莊的距離之和為y.
(1)設,求y關于的函數關系式;
(2)變電站建于何處時,它到三個小區(qū)的距離之和最?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分16分)

對于函數,如果是一個三角形的三邊長,那么也是一個三角形的三邊長,則稱函數為“保三角形函數”.
對于函數,如果是任意的非負實數,都有是一個三角形的三邊長,則稱函數為“恒三角形函數”.
(Ⅰ)判斷三個函數“(定義域均為)”中,哪些是“保三角形函數”?請說明理由;
(Ⅱ)若函數是“恒三角形函數”,試求實數的取值范圍;
(Ⅲ)如果函數是定義在上的周期函數,且值域也為,試證明:既不是“恒三角形函數”,也不是“保三角形函數”.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

f(10x)= x, 則f(5) =         .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

隨著計算機技術的不斷發(fā)展,電腦的性能越來越好,而價格又在不斷降低,若每隔兩年電腦的價格可以降低三分之一,則現在的價格為8100元的電腦在6年后的價格可降為          元

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數的圖象過點A(3,7),則此函的最小值是        

查看答案和解析>>

同步練習冊答案