(本題滿分12分)雙曲線與橢圓有相同焦點(diǎn),且經(jīng)過點(diǎn)(,4),求其方程.

解析試題分析:解:橢圓的焦點(diǎn)為(0,±3),c=3,………………………3分
設(shè)雙曲線方程為,…………………………………6分
∵過點(diǎn)(,4),則,……………………………9分
得a2=4或36,而a2<9,∴a2=4,………………………………11分
雙曲線方程為.………………………………………12分
考點(diǎn):雙曲線橢圓性質(zhì)及標(biāo)準(zhǔn)方程
點(diǎn)評(píng):此題還可利用橢圓定義求a

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)如圖,在平面直坐標(biāo)系中,已知橢圓,經(jīng)過點(diǎn),其中e為橢圓的離心率.且橢圓與直線 有且只有一個(gè)交點(diǎn)。

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)不經(jīng)過原點(diǎn)的直線與橢圓相交與A,B兩點(diǎn),第一象限內(nèi)的點(diǎn)在橢圓上,直線平分線段,求:當(dāng)的面積取得最大值時(shí)直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分) 已知?jiǎng)訄A過定點(diǎn),且與直線相切,橢圓 的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)是,點(diǎn)在橢圓上.
(Ⅰ)求動(dòng)圓圓心的軌跡的方程及其橢圓的方程;
(Ⅱ)若動(dòng)直線與軌跡處的切線平行,且直線與橢圓交于兩點(diǎn),問:是否存在著這樣的直線使得的面積等于?如果存在,請(qǐng)求出直線的方程;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知橢圓C:以雙曲線的焦點(diǎn)為頂點(diǎn),其離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓C的方程;
(2)若橢圓C的左、右頂點(diǎn)分別為點(diǎn)A,B,點(diǎn)M是橢圓C上異于A,B的任意一點(diǎn).
①求證:直線MA,MB的斜率之積為定值;
②若直線MA,MB與直線x=4分別交于點(diǎn)P,Q,求線段PQ長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知半徑為6的圓軸相切,圓心在直線上且在第二象限,直線過點(diǎn)
(Ⅰ)求圓的方程;
(Ⅱ)若直線與圓相交于兩點(diǎn)且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知拋物線的焦點(diǎn)為,準(zhǔn)線為,過上一點(diǎn)P作拋物線的兩切線,切點(diǎn)分別為A、B,
(1)求證:;
(2)求證:A、F、B三點(diǎn)共線;
(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓上的任意一點(diǎn)到它的兩個(gè)焦點(diǎn), 的距離之和為,且其焦距為
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓交于不同的兩點(diǎn)A,B.問是否存在以A,B為直徑
的圓 過橢圓的右焦點(diǎn).若存在,求出的值;不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦點(diǎn),長(zhǎng)軸長(zhǎng)6,設(shè)直線交橢圓,兩點(diǎn),求線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的焦點(diǎn)F1(-,0)和F2,0),長(zhǎng)軸長(zhǎng)6。
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)設(shè)直線交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案