分析 由已知可得:a1=16,a1+a2=a1(1+q)=32,a1+a2+a3=${a}_{1}(1+q+{q}^{2})$=76,a1+a2+a3+a4=${a}_{1}(1+q+{q}^{2}+{q}^{3})$=130,不妨假設(shè)第一個與第二個等式成立,解得a1=16,q=1,經(jīng)過驗證第四個與第三個等式都不成立,因此第一個與第二個等式必定有一個不成立.假設(shè)第一個與第三個等式成立,解得a1,q.驗證即可得出.
解答 解:由已知可得:a1=16,a1+a2=a1(1+q)=32,a1+a2+a3=${a}_{1}(1+q+{q}^{2})$=76,a1+a2+a3+a4=${a}_{1}(1+q+{q}^{2}+{q}^{3})$=130,
不妨假設(shè)第一個與第二個等式成立,解得a1=16,q=1,經(jīng)過驗證第四個與第三個等式都不成立,因此第一個與第二個等式必定有一個不成立.
假設(shè)第一個與第三個等式成立,解得a1=16,q=$\frac{3}{2}$或-$\frac{5}{2}$.經(jīng)過驗證q=$\frac{3}{2}$時,第四個等式成立,因此可得:算錯的這個數(shù)是S2,該數(shù)列的公比是 $\frac{3}{2}$.
故答案分別為:32(S2),$\frac{3}{2}$.
點評 本題考查了等比數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{2}{3}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,1} | B. | {3,5} | C. | {-1,1} | D. | {-1,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com