分析 (1)由題意知A,利用周期公式可求ω,由圖象上有一個(gè)最低點(diǎn)為M($\frac{7π}{12}$,-3),結(jié)合范圍|θ|<$\frac{π}{2}$,可求θ,即可得解函數(shù)解析式.
(2)由已知利用正弦函數(shù)的單調(diào)性即可得解.
解答 (本題滿分為15分)
解:(1)由題可知,$\left\{\begin{array}{l}{\stackrel{T=π=\frac{2π}{ω}}{A=3}}\\{ω•\frac{7π}{12}+θ=\frac{3π}{2}+2kπ,k∈Z}\end{array}\right.$,…(3分)
解得:ω=2,θ=$\frac{π}{3}$,可得解析式為:f(x)=3sin(2x+$\frac{π}{3}$).…(6分)
(2)由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,…(8分)
可得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,k∈Z,…(10分)
又x∈[0,π],可得單調(diào)遞增區(qū)間為:[0,$\frac{π}{12}$],[$\frac{7π}{12}$,π].…(15分)
點(diǎn)評(píng) 本題主要考察了正弦函數(shù)的圖象和性質(zhì),由y=Asin(ωx+φ)的部分圖象確定其解析式,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | a>c>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x1)<f(x2) | B. | f(x1)>f(x2) | ||
C. | f(x1)=f(x2) | D. | f(x1)<f(x2)和f(x1)=f(x2)都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com