已知f(x)=x2+ax-3a-9,對(duì)任意x∈R,恒有f(x)≥0,則f(1)的值等于


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6
B
分析:由題意f(x)=x2+ax-3a-9,對(duì)任意x∈R,恒有f(x)≥0,根據(jù)其圖象令△≤0,求出a值,從而求出f(1).
解答:∵f(x)=x2+ax-3a-9=(x+2--3a-9,
因?yàn)閳D象開口向上,
∵f(x)=x2+ax-3a-9,對(duì)任意x∈R,恒有f(x)≥0,
∴△≤0,
∴a2-4(-3a-9)≤0,
∴(a+6)2≤0,
∴a=-6,
∴f(1)=12+a-3a-9=-2a-8=-2×(-6)-8=4,
故選B.
點(diǎn)評(píng):此題主要考查函數(shù)的性質(zhì)及其圖象,還有函數(shù)恒成立問題,比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+ax+b(a,b∈R的定義域?yàn)閇-1,1].
(1)記|f(x)|的最大值為M,求證:M≥
1
2
.
(2)求出(1)中的M=
1
2
時(shí),f(x)
的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+x+1,則f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+2x,數(shù)列{an}滿足a1=3,an+1=f′(an)-n-1,數(shù)列{bn}滿足b1=2,bn+1=f(bn).
(1)求證:數(shù)列{an-n}為等比數(shù)列;
(2)令cn=
1
an-n-1
,求證:c2+c3+…+cn
2
3

(3)求證:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)確定k的值;
(2)求f(x)+
9f(x)
的最小值及對(duì)應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在區(qū)間(-∞,(a+1)2]上都是減函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,比較f(1)和
16
的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案