15.如圖是200輛汽車在某紅綠燈處的速度頻率分布直方圖,則速度眾數(shù)大約是50.

分析 眾數(shù)位于頻率分布直方圖中最高的小矩形對應(yīng)的區(qū)間內(nèi),由此能求出結(jié)果.

解答 解:由頻率分布直方圖得速度區(qū)間[40,60)對應(yīng)的小矩形最高,
∴速度眾數(shù)是50.
故答案為:50.

點評 本題考查眾數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意頻率分布直方圖的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)在定義域上的可導(dǎo)函數(shù)f(x)滿足f(ex)=x-ex,則函數(shù)f(x)的解析式為f(x)=lnx-x,它的遞增區(qū)間是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個工人看管三臺機(jī)床,在一小時內(nèi),這三臺機(jī)床需要工人照管的概率分別0.9、0.8、0.6,則在一小時內(nèi)沒有一臺機(jī)床需要工人照管的概率為( 。
A.0 006B.0.008C.0.004D.0.016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.2015年國慶節(jié)期間,甲、乙、丙三位打工者計劃回老家陪伴父母,甲、乙、丙回老家的概率分別為$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$,假設(shè)三人的行動相互之間沒有影響,那么這段時間至少有1人回老家的概率為( 。
A.$\frac{3}{4}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)Sn表示數(shù)列{an}的前n項和.
(Ⅰ)若{an}是等差數(shù)列,試證明:Sn=$\frac{{n({a_1}+{a_n})}}{2}$;
(Ⅱ)若a1=1,q≠0,且對所有的正整數(shù)n,有Sn=$\frac{{1-{q^n}}}{1-q}$,判斷{an}是否為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)A={小于90°的角},B={銳角},C={第一象限角},D={小于90°而不小于0°的角},那么有( 。
A.B?C?AB.B?A?CC.D?(A∩C)D.C∩D=B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.由曲線y=-x2+2x與y=1-$\sqrt{1-{x}^{2}}$所圍成的圖形的面積為$\frac{π}{4}-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在如圖所示的四棱錐P-ABCD中,四邊形ABCD為正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分別為PD,CD,AD的中點,$\overrightarrow{PF}$=3$\overrightarrow{FD}$.
(1)證明:PB∥平面FMN;
(2)若PA=AB,求二面角E-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.能夠把⊙M:(x-2)2+(y-2)2=1的面積一分為二的曲線C:f(x,y)=0被稱為⊙M的“八卦曲線”,下列對⊙M的“八卦曲線”C的判斷正確的是( 。
A.“八卦曲線”C一定是函數(shù)
B.“八卦曲線”C的圖象一定關(guān)于直線x=2成軸對稱
C.“八卦曲線”C的圖象一定關(guān)于點(2,2)成中心對稱
D.“八卦曲線”C的方程為y=2

查看答案和解析>>

同步練習(xí)冊答案