等比數(shù)列{an}的前n項和為Sn(n∈N*),數(shù)學(xué)公式,則數(shù)學(xué)公式=


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:法一:由可設(shè)S2=k,S4=3k,,由等比數(shù)列的性質(zhì)可知,S2,S4-S2,S6-S4,S8-S6成等比數(shù)列,代入可求
法二:由題===,從而可求q2=2,代入==可求
解答:法一:由可設(shè)S2=k,S4=3k,
由等比數(shù)列的性質(zhì)可知,S2,S4-S2,S6-S4,S8-S6成等比數(shù)列
∴k,3k-k,S6-3k,S8-S6成等比數(shù)列
∴4k2=k(S6-3k)
∴S6=7K,s8=15K
=
故選B
法二:設(shè)等比數(shù)列的公比為q
由題意可得
===
∴q2=2
===
故選B
點評:本題主要考查了等比數(shù)列和的求解,解法一主要利用了等比數(shù)列的性質(zhì),解法二主要利用了等比數(shù)列的求和公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)敘述并證明等比數(shù)列的前n項和公式;
(2)已知Sn是等比數(shù)列{an} 的前n項和,S3,S9,S6成等差數(shù)列,求證:a1+k,a7+k,a4+k(k∈N)成等差數(shù)列;
(3)已知Sn是正項等比數(shù)列{an} 的前n項和,公比0<q≤1,求證:2Sn+1≥Sn+Sn+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Sn是等比數(shù)列{an}的前n項和,對于任意正整數(shù)n,恒有Sn>0,則等比數(shù)列{an}的公比q的取值范圍為
(-1,0)∪(0,+∞)
(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•藍山縣模擬)統(tǒng)計某校高三年級100名學(xué)生的數(shù)學(xué)月考成績,得到樣本頻率分布直方圖如下圖所示,已知前4組的頻數(shù)分別是等比數(shù)列{an}的前4項,后6組的頻數(shù)分別是等差數(shù)列{bn}的前6項,
(1)求數(shù)列{an}、{bn}的通項公式;
(2)設(shè)m、n為該校學(xué)生的數(shù)學(xué)月考成績,且已知m、n∈[70,80)∪[140,150],求事件|m-n|>10”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項和為Sn,又Wn=
1
a1
+
1
a2
+
1
a3
+…+
1
an
,如果a8=10,那么S15:W15=
100
100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是正項等比數(shù)列{an}的前n項和,S2=4,S4=20則數(shù)列的首項a1=( 。

查看答案和解析>>

同步練習(xí)冊答案