解:(1)f′(x)=3x
2-3a
若a<0則可得f′(x)≥0,不合題意
若a>0則
可得
∴a=4
(II)設(shè)切點(diǎn)為(x
0,y
0)而f(x)=x
3-12x+2
故
,則
,故切線為y=-9x
由題意得
,說明函數(shù)h(x)=2bx
2+2x-3-b在區(qū)間[-1,1]上有零點(diǎn)
若b=0,則函數(shù)h(x)=2x-3在[-1,1]上沒有零點(diǎn)
若a≠0,時(shí)分三種情況討論:
①方程h(x)=0在區(qū)間[-1,1]上有重根,此時(shí)△=4(2b
2+6b+1)=0,解得
當(dāng)
時(shí),h(x)=0的重根
當(dāng)
時(shí),h(x)=0的重根
∉[-1,1]
故當(dāng)方程h(x)=0在區(qū)間[-1,1]上有重根時(shí),b=
②h(x)在區(qū)間[-1,1]上只有一個(gè)零點(diǎn)且不是h(x)=0的重根
此時(shí)有h(-1)h(1)≤0∵h(yuǎn)(-1)=b-5,h(1)=b-1∴(b-5)(b-1)≤0?1≤b≤5
∵當(dāng)b=5時(shí),方程h(x)=0在區(qū)間[-1,1]上有兩個(gè)不同的實(shí)根
故當(dāng)方程h(x)=0在區(qū)間[-1,1]上只有一個(gè)根且不是重根時(shí),1≤b<5
③方程h(x)=0在區(qū)間[-1,1]有兩個(gè)不同的實(shí)根,則
綜上可得,b的取值范圍
分析:(I)先對(duì)函數(shù)求導(dǎo)f′(x)=3x
2-3a,分a>0,f′(x)≥0,a>0則
,討論函數(shù)的單調(diào)性,進(jìn)而求解函數(shù)的極值,從而可求a
(II)由題意可求切線方程y=-9x,由
,在[-1,1]上的圖象有交點(diǎn),說明函數(shù)得函數(shù)h(x)=2bx
2+2x-3-b在區(qū)間[-1,1]上有零點(diǎn),利用方程的實(shí)根分別問題進(jìn)行求解即可
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及求解函數(shù)的極值,導(dǎo)數(shù)的幾何意義的應(yīng)用,解決本題的關(guān)鍵是靈活應(yīng)用方程的實(shí)根分布進(jìn)行求解.