【題目】已知函數(shù).
(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(2)是否存在整數(shù),使得關(guān)于的不等式的解集為?若存在,求出的值;若不存在,請(qǐng)說明理由.
【答案】(1);(2).
【解析】
試題分析:(1)借助題設(shè)條件運(yùn)用二次函數(shù)的知識(shí)分類求解;(2)借助題設(shè)運(yùn)用函數(shù)與方程思想分類探求.
試題解析:
(1),
在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù).
①,即,在上為增函數(shù),的最小值為,則;
②,即,在上的最小值為,
則,∴此時(shí)無解;
③,即,在上為減函數(shù),的最小值為,
則,,∴此時(shí)無解.
綜上,實(shí)數(shù)的取值范圍是.
(2)假設(shè)存在適合題意的整數(shù),則必有,
這時(shí)的解集為
由得,即,
因時(shí)此式不成立,故.
∵,故,只可能.
當(dāng)時(shí),,不符合;
當(dāng)時(shí),,符合題意.
綜上知,存在適合題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將甲、乙、丙、丁四名同學(xué)按一定順序排成一行,要求自左向右,且甲不排在第一,乙不排在第二,丙不排在第三,丁不排在第四,比如:“乙甲丁丙”是滿足要求的一種排法,試寫出他們四個(gè)人所有不同的排法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別是,離心率,過點(diǎn)且垂直于軸的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)若直線過橢圓的右焦點(diǎn),且與軸不重合,交橢圓于兩點(diǎn),過點(diǎn)且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某上市股票在30天內(nèi)每股的交易價(jià)格P(元)與時(shí)間t(天)組成有序數(shù)對(duì)(t,P),點(diǎn)(t,P)落在如下圖象中的兩條線段上.該股票在30天內(nèi)(包括30天)的日交易量Q(萬股)與時(shí)間t(天)的部分?jǐn)?shù)據(jù)如下表所示:
(1)根據(jù)提供的圖象,寫出該種股票每股的交易價(jià)格P(元)與時(shí)間t(天)所滿足的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù)確定日交易量Q(萬股)與時(shí)間t(天)的一次函數(shù)關(guān)系式;
(3)用y(萬元)表示該股票日交易額,寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾天日交易額最大,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),鄭州市面向全市征召義務(wù)宣傳志愿者. 從符合條件的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是: .
(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在歲的人數(shù);
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場(chǎng)的宣傳活動(dòng),再從這10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人. 記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—1:幾何證明選講
如圖,圓周角∠BAC的平分線與圓交于點(diǎn)D,過點(diǎn)D的切線與弦AC的延長線交于點(diǎn) E,AD交BC于點(diǎn)F.
(1)求證:BC∥DE;
(2)若D、E、C、F四點(diǎn)共圓,且,求∠BAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,函數(shù).
(1)寫出的單調(diào)區(qū)間;
(2)若在上的最大值為,求的取值范圍;
(3)若對(duì)任意正實(shí)數(shù),不等式恒成立,求正實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).
(1)求的解析式及單調(diào)遞減區(qū)間;
(2)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com