分析 an-2an-1=2n,變形為:$\frac{{a}_{n}}{{2}^{n}}$-$\frac{{a}_{n-1}}{{2}^{n-1}}$=1,利用等差數(shù)列的通項公式即可得出.
解答 解:∵an-2an-1=2n,
∴$\frac{{a}_{n}}{{2}^{n}}$-$\frac{{a}_{n-1}}{{2}^{n-1}}$=1,
∴數(shù)列$\{\frac{{a}_{n}}{{2}^{n}}\}$是等差數(shù)列,公差為1,首項為$\frac{1}{2}$.
∴$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}$+(n-1)=$\frac{2n-1}{2}$.
則{an}的通項公式為:an=(2n-1)×2n-1.
故答案為:(2n-1)×2n-1.
點評 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 非奇非偶函數(shù) | D. | 奇函數(shù)同時也是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=sinx | B. | f(x)=cosx | C. | f(x)=-sin(4x+$\frac{π}{4}$) | D. | f(x)=sin(4x+$\frac{π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2} | B. | {4,6} | C. | {2,4,6} | D. | {1,2,3,4,5,6} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com