【題目】如圖,四棱錐的底面是菱形, 與交于點, 底面,點為中點, .
(1)求直線與所成角的余弦值;
(2)求平面與平面所成銳二面角的余弦值.
【答案】(1)(2)
【解析】試題分析:(1)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),表示直線方向向量,根據(jù)向量數(shù)量積求向量夾角,最后根據(jù)線線角與向量夾角關(guān)系得結(jié)果(2)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),根據(jù)方程組解出各面法向量,根據(jù)向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果
試題解析:解:(1)因為是菱形,所以.又底面,以為原點,直線 分別為軸, 軸, 軸,建立如圖所示空間直角坐標(biāo)系.
則, , , , .
所以, , ,
, .
則.
故直線與所成角的余弦值為.
(2), .
設(shè)平面的一個法向量為,
則,得,令,得, .
得平面的一個法向量為.
又平面的一個法向量為,所以 , , .
則.
故平面與平面所成銳二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(0)=0,當(dāng)x>0時,
f(x)=.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角梯形中, , , , 、分別是邊、上的點,且,沿將折起并連接成如圖的多面體,折后.
(Ⅰ)求證: ;
(Ⅱ)若折后直線與平面所成角的正弦值是,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足,其中且.
(1)對于函數(shù),當(dāng)時, ,求實數(shù)的集合;
(2)時, 的值恒為負(fù)數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 (為參數(shù)),點是曲線上的一動點,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,直線的方程為 .
(Ⅰ)求線段的中點的軌跡的極坐標(biāo)方程;
(Ⅱ)求曲線上的點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)設(shè),若,對任意成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若不等式恒成立,則實數(shù)的取值范圍;
(2)在(1)中, 取最小值時,設(shè)函數(shù).若函數(shù)在區(qū)間上恰有兩個零點,求實數(shù)的取值范圍;
(3)證明不等式: (且).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求曲線在點處的切線的斜率;
(Ⅱ)判斷方程(為的導(dǎo)數(shù))在區(qū)間內(nèi)的根的個數(shù),說明理由;
(Ⅲ)若函數(shù)在區(qū)間內(nèi)有且只有一個極值點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com