12.若集合A={x|0<x<2},且A∩B=B,則集合B可能是( 。
A.{0,2}B.{0,1}C.{0,1,2}D.{1}

分析 根據(jù)A∩B=B,即可判斷集合B的范圍,可得答案.

解答 解:由題意:集合A={x|0<x<2},
∵A∩B=B,
∴B⊆A,
故選:D.

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=$\sqrt{3-x}$+lg(x+2)的定義域?yàn)椋ā 。?table class="qanwser">A.(-2,3)B.(-2,3]C.(-2,+∞)D.[-2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求橢圓C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1在矩陣A=$[\begin{array}{l}{\frac{1}{3}}&{0}\\{0}&{\frac{1}{2}}\end{array}]$對(duì)應(yīng)的變換作用下所得的曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.命題p:?x0∈R,x02+2x0+1≤0是真命題(選填“真”或“假”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)函數(shù)f(x)=kx2-kx,g(x)=$\left\{\begin{array}{l}lnx,x≥1\\-{x^3}+({a+1}){x^2}-ax,0<x<1\end{array}$,若使得不等式f(x)≥g(x)對(duì)一切正實(shí)數(shù)x恒成立的實(shí)數(shù)k存在且唯一,則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)y=(x+1)0+ln(-x2-3x+4)的定義域?yàn)閧x|-4<x<-1或-1<x<1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.正四棱錐S-ABCD中,O為頂點(diǎn)在底面上的射影,P為側(cè)棱SD的中點(diǎn),且SO=OD,則直線BC與平面PAC所成的角是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.不等式$\frac{{x}^{2}+x-6}{x+1}$>0的解集為( 。
A.{x|-2<x<-1,或x>3}B.{x|-3<x<-1,或x>2}C.{x|x<-3,或-1<x<2}D.{x|x<-3,或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ex-ax,x∈R
(1)若a=2,求曲線f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)當(dāng)a>1時(shí),求函數(shù)f(x)在[0,a]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案