【題目】為了檢測生產(chǎn)線上某種零件的質(zhì)量,從產(chǎn)品中隨機(jī)抽取100個(gè)零件,測量其尺寸,得到如圖所示的頻率分布直方圖.若零件尺寸落在區(qū)間之內(nèi),則認(rèn)為該零件合格,否則認(rèn)為不合格.其中分別表示樣本的平均值和標(biāo)準(zhǔn)差,計(jì)算得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

1)已知一個(gè)零件的尺寸是,試判斷該零件是否合格;

2)利用分層抽樣的方法從尺寸在的樣本中抽取6個(gè)零件,再從這6個(gè)零件中隨機(jī)抽取2個(gè),求這2個(gè)零件中恰有1個(gè)尺寸小于的概率.

【答案】1)該零件不合格.(2

【解析】

1)根據(jù)頻率分布直方圖,計(jì)算出的區(qū)間,再判斷是否屬于區(qū)間內(nèi),即可得答案;

2)記這6個(gè)零件編號為:,再列出從這6個(gè)零件中隨機(jī)抽取2個(gè)的基本事件,記事件為:選出的2個(gè)零件中恰有1個(gè)尺寸小于,計(jì)算事件包含的基本事件,利用古典概型計(jì)算概率,即可得答案;

1)記各組的頻率為,依題意得

,故該零件不合格.

2)記前三組抽取的零件個(gè)數(shù)分別為

,∴

∴抽取出的6個(gè)零件中尺寸小于的有3個(gè).

記這6個(gè)零件編號為:(其中為尺寸小于的)

記事件為:選出的2個(gè)零件中恰有1個(gè)尺寸小于

∴從這6個(gè)零件中隨機(jī)抽取2個(gè)的基本事件有:

15個(gè).

則事件包含的基本事件有:

9個(gè)

∴這2個(gè)零件中恰有1個(gè)尺寸小于的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,,分別是,中點(diǎn),為線段上的一個(gè)動(dòng)點(diǎn).

1)證明:平面

2)當(dāng)二面角的余弦值為時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)若函數(shù)在點(diǎn)處的切線的斜率為,求實(shí)數(shù)的值;

2)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

3)若關(guān)于的不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上世紀(jì)末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術(shù)及先進(jìn)的數(shù)學(xué)水平,也印證了我國古代音律與歷法的密切聯(lián)系.2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數(shù)據(jù)(骨笛的彎曲忽略不計(jì)),夏至(或冬至)日光(當(dāng)日正午太陽光線)與春秋分日光(當(dāng)日正午太陽光線)的夾角等于黃赤交角.

由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對應(yīng)的年代如下表:

黃赤交角

正切值

0.439

0.444

0.450

0.455

0.461

年代

公元元年

公元前2000

公元前4000

公元前6000

公元前8000

根據(jù)以上信息,通過計(jì)算黃赤交角,可估計(jì)該骨笛的大致年代是( )

A.公元前2000年到公元元年B.公元前4000年到公元前2000

C.公元前6000年到公元前4000D.早于公元前6000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體ABCDA1B1C1D1中,AA18,AB3,AD8,點(diǎn)M是棱AD的中點(diǎn),點(diǎn)N是棱AA1的中點(diǎn),P是側(cè)面四邊形ADD1A1內(nèi)一動(dòng)點(diǎn)(含邊界),若C1P∥平面CMN,則線段C1P長度的取值范圍是(  )

A.B.[4,5]C.[3,5]D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠計(jì)劃建設(shè)至少3個(gè),至多5個(gè)相同的生產(chǎn)線車間,以解決本地區(qū)公民對特供商品的未來需求.經(jīng)過對先期樣本的科學(xué)性調(diào)查顯示,本地區(qū)每個(gè)月對商品的月需求量均在50萬件及以上,其中需求量在50~ 100萬件的頻率為0.5,需求量在100~200萬件的頻率為0.3,不低于200萬件的頻率為0.2.用調(diào)查樣本來估計(jì)總體,頻率作為相應(yīng)段的概率,并假設(shè)本地區(qū)在各個(gè)月對本特供商品的需求相互獨(dú)立.

1)求在未來某連續(xù)4個(gè)月中,本地區(qū)至少有2個(gè)月對商品的月需求量低于100萬件的概率.

2)該工廠希望盡可能在生產(chǎn)線車間建成后,車間能正常生產(chǎn)運(yùn)行,但每月最多可正常生產(chǎn)的車間數(shù)受商品的需求量的限制,并有如下關(guān)系:

商品的月需求量(萬件)

車間最多正常運(yùn)行個(gè)數(shù)

3

4

5

若一個(gè)車間正常運(yùn)行,則該車間月凈利潤為1500萬元,而一個(gè)車間未正常生產(chǎn),則該車間生產(chǎn)線的月維護(hù)費(fèi)(單位:萬元)與月需求量有如下關(guān)系:

商品的月需求量(萬件)

未正常生產(chǎn)的一個(gè)車間的月維護(hù)費(fèi)(萬元)

500

600

試分析并回答該工廠應(yīng)建設(shè)生產(chǎn)線車間多少個(gè)?使得商品的月利潤為最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中,曲線的方程為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.若將曲線上的所有點(diǎn)的橫坐標(biāo)縮小到原來的一半,縱坐標(biāo)伸長到原來的倍,得曲線

1)寫出直線和曲線的直角坐標(biāo)方程;

2)設(shè)點(diǎn), 直線與曲線的兩個(gè)交點(diǎn)分別為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖像大致是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高中三個(gè)年級共有4000人,為了了解各年級學(xué)周末在家的學(xué)習(xí)情況,現(xiàn)通過分層抽樣的方法獲得相關(guān)數(shù)據(jù)如下(單位:小時(shí)),其中高一學(xué)生周末的平均學(xué)習(xí)時(shí)間記為.

高一:14 15 15.5 16.5 17 17 18 19

高二:15 16 16 16 17 17 18.5

高三:16 17 18 21.5 24

(1)求每個(gè)年級的學(xué)生人數(shù);

(2)從高三被抽查的同學(xué)中隨機(jī)抽取2人,求2人學(xué)習(xí)時(shí)間均超過的概率.

查看答案和解析>>

同步練習(xí)冊答案