分析 (1)將a=1代入結(jié)合二次函數(shù)的圖象和性質(zhì),可得答案.
(2)先求對稱軸,比較對稱軸和區(qū)間的關(guān)系,利用開口向下的二次函數(shù)離對稱軸越近函數(shù)值越大來解題.
解答 解:(1)若a=1,函數(shù)f(x)=-x2+2x,
函數(shù)圖象是開口朝下,且以直線x=1為對稱軸的拋物線,
故當(dāng)x=1時,函數(shù)f(x)取最大值1,
(2)函數(shù)f(x)=-x2+2ax+1-a的圖象是開口朝下,且以直線x=a為對稱軸的拋物線,
當(dāng)a<0時,[0,1]是f(x)的遞減區(qū)間,f(x)max=f(0)=1-a=2,
∴a=-1;
當(dāng)a>1時,[0,1]是f(x)的遞增區(qū)間,f(x)max=f(1)=a=2,
∴a=2;
當(dāng)0≤a≤1時,f(x)max=f(a)=a2-a+1=2,
解得a=$\frac{1-\sqrt{5}}{2}$(舍去),或a=$\frac{1+\sqrt{5}}{2}$(舍去),
所以a=-1或a=2.
點評 此題是個中檔題.本題考查了二次函數(shù)在閉區(qū)間上的最值問題.關(guān)于不定解析式的二次函數(shù)在固定閉區(qū)間上的最值問題,一般是根據(jù)對稱軸和閉區(qū)間的位置關(guān)系來進行分類討論,如軸在區(qū)間左邊,軸在區(qū)間右邊,軸在區(qū)間中間,最后再綜合歸納得出所需結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{5}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1] | B. | [-1,2) | C. | (2,+∞) | D. | (-∞,-1]∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{40}{9}$ | B. | $-\frac{8}{21}$ | C. | 1 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com