【題目】已知橢圓C1 的離心率為 ,且經(jīng)過點(diǎn)M 的直徑C1的長(zhǎng)軸.如圖,C是橢圓短軸端點(diǎn),動(dòng)直線AB過點(diǎn)C且與圓C2交于A,B兩點(diǎn),CD垂直于AB交橢圓于點(diǎn)D.

(1)求橢圓C1的方程;
(2)求△ABD面積的最大值,并求此時(shí)直線AB的方程.

【答案】
(1)解:∵橢圓C1 的離心率為

,∴a=2k,b=k,k>0,

,

∵橢圓C1經(jīng)過點(diǎn)M ),

,解得k2=1,

∴橢圓C1的方程為


(2)解:設(shè)A(x1,y1),B(x2,y2),D(x0,y0),

由題意知直線l1的斜率存在,設(shè)直線l1的方程為y=kx+1,

又圓C2:x2+y2=4,

∴點(diǎn)O到直線l1的距離d= ,

∴|AB|=2 =2 ,

又∵l1⊥l2,∴直線l2的方程為x+ky﹣k=0.

,消去y,得:

(4+k2)x2+8kx=0,

,

∴|CD|= ,

設(shè)△ABD的面積為S,則S= = ,

∴S=

= ,

當(dāng)且僅當(dāng)k= 時(shí)取等號(hào),

∴所求的直線l1的方程為


【解析】(1)由已知條件得 ,所以設(shè)橢圓方程為 ,再由橢圓C1經(jīng)過點(diǎn)M , ),能求出橢圓C1的方程.(2)設(shè)A(x1 , y1),B(x2 , y2),D(x0 , y0),設(shè)直線l1的方程為y=kx+1,又圓C2:x2+y2=4,求出點(diǎn)O到直線l1的距離和|AB|,求出直線l2的方程為x+ky﹣k=0.由此能求出直線l1的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一位同學(xué)家里訂了一份報(bào)紙,送報(bào)人每天都在在早上5:20~6:40之間將報(bào)紙送到達(dá),該同學(xué)的爸爸需要早上6:00~7:00之間出發(fā)去上班,則這位同學(xué)的爸爸在離開家前能拿到報(bào)紙的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的平行六面體ABCD﹣A1B1C1D中,AB=AD=AA1=1,∠BAD=90°,∠BAA1=∠DAA1=60°,則CA1的長(zhǎng)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次馬拉松比賽中,35名運(yùn)動(dòng)員的成績(jī)(單位:分鐘)的莖葉圖如圖所示.若將運(yùn)動(dòng)員成績(jī)由好到差編號(hào)為1﹣35號(hào),再用系統(tǒng)抽樣方法從中抽取7人,則其中成績(jī)?cè)趨^(qū)間[139,151]上的運(yùn)動(dòng)員人數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解高一學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長(zhǎng)方形面積之比為2:4:17:15:9:3,已知第二小組頻數(shù)為12.

(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上(含110次)為達(dá)標(biāo),試估計(jì)該學(xué)校全體高一學(xué)生的達(dá)標(biāo)率是多少?
(3)在這次測(cè)試中,學(xué)生跳繩次數(shù)的中位數(shù)落在哪個(gè)小組內(nèi)?請(qǐng)說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn , 2Sn﹣nan=n(n∈N*),若S20=﹣360,則a2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合A={x|a﹣1<x<2a+1},B={x|0<x<1},若A∩B=,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖給出的四個(gè)對(duì)應(yīng)關(guān)系,其中構(gòu)成映射的是( )

A.(1)(2)
B.(1)(4)
C.(1)(2)(4)
D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ACBD中, ,且△ABC為正三角形.

(Ⅰ)求cos∠BAD的值;
(Ⅱ)若CD=4, ,求AB和AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案