【題目】在一次馬拉松比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示.若將運動員成績由好到差編號為1﹣35號,再用系統(tǒng)抽樣方法從中抽取7人,則其中成績在區(qū)間[139,151]上的運動員人數(shù)是

【答案】4
【解析】解:根據(jù)莖葉圖中的數(shù)據(jù),得;
成績在區(qū)間[139,151]上的運動員人數(shù)是20,
用系統(tǒng)抽樣方法從35人中抽取7人,
成績在區(qū)間[139,151]上的運動員應抽取
=4(人).
所以答案是:4.
【考點精析】認真審題,首先需要了解莖葉圖(莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個不重合的平面α,β和兩條不同直線m,n,則下列說法正確的是( )
A.若m⊥n,n⊥α,mβ,則α⊥β
B.若α∥β,n⊥α,m⊥β,則m∥n
C.若m⊥n,nα,mβ,則α⊥β
D.若α∥β,nα,m∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需要增加投入100元,最大月產量是400臺.已知總收益滿足函數(shù) ,其中x是儀器的月產量(單位:臺).
(1)將利潤y(單位:元)表示為月產量x(單位:臺)的函數(shù);
(2)當月產量為何值時,公司所獲得利潤最大?最大利潤為多少?(總收益=總成本+利潤).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域;
(2)求f(﹣2)及f(6)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2mx+10(m>1).
(1)若f(m)=1,求函數(shù)f(x)的解析式;
(2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對于任意的x1 , x2∈[1,m+1],|f(x1)﹣f(x2)|≤9恒成立,求實數(shù)m的取值范圍;
(3)若f(x)在區(qū)間[3,5]上有零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1 的離心率為 ,且經過點M 的直徑C1的長軸.如圖,C是橢圓短軸端點,動直線AB過點C且與圓C2交于A,B兩點,CD垂直于AB交橢圓于點D.

(1)求橢圓C1的方程;
(2)求△ABD面積的最大值,并求此時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在區(qū)間[1,2]上不是單調函數(shù),求實數(shù)b的范圍;
(2)若對任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在[﹣2,2]上的奇函數(shù),且f(2)=3,若對任意的m,n∈[﹣2,2],m+n≠0,都有 >0.
(1)若f(2a﹣1)<f(a2﹣2a+2),求實數(shù)a的取值范圍;
(2)若不等式f(x)≤(5﹣2a)t+1對任意x∈[﹣2,2]和a∈[﹣1,2]都恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案