【題目】己知函數(shù), .
(I)求函數(shù)上零點的個數(shù);
(II)設,若函數(shù)在上是增函數(shù).
求實數(shù)的取值范圍.
【答案】(Ⅰ)零點個數(shù)為 (II)的取值范圍是
【解析】試題分析:(1)先求得, 時, 恒成立,可證明時, ,可得在上單調遞減,根據(jù)零點定理可得結果;(2)化簡為分段函數(shù),利用導數(shù)研究函數(shù)的單調性,討論兩種情況,分別分離參數(shù)求最值即可求得實數(shù)的取值范圍.
試題解析:(Ⅰ)函數(shù) ,
求導,得,
當時, 恒成立,
當時, ,
∴ ,
∴在上恒成立,故在上單調遞減.
又, ,
曲線在[1,2]上連續(xù)不間斷,
∴由函數(shù)的零點存在性定理及其單調性知,唯一的∈(1,2),使,
所以,函數(shù)在上零點的個數(shù)為1.
(II)由(Ⅰ)知:當時, >0,當時, <0.
∴當時, =
求導,得
由于函數(shù)在上是增函數(shù), 故在, 上恒成立.
①當時, ≥0在上恒成立,
即在上恒成立,
記, ,則,,
所以, 在上單調遞減,在上單調遞增,
∴min= 極小值= ,
故“在上恒成立”,只需 ,即.
②當時, ,
當時, 在上恒成立,
綜合①②知,當時,函數(shù)在上是增函數(shù).
故實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,
(1)若f(﹣1)=0,且函數(shù)f(x)的值域為[0,+∞),求F(x)的表達式;
(2)在(1)的條件下,當x∈[﹣2,2]時,g(x)=f(x)﹣kx是單調函數(shù),求實數(shù)k的取值范圍;
(3)設mn<0,m+n>0,a>0且f(x)為偶函數(shù),判斷F(m)+F(n)能否大于零.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點P在☉O外,PC是☉O的切線,切點為C,直線PO與☉O相交于點A,B.
(1)試探索∠BCP與∠P的數(shù)量關系;
(2)若∠A=30°,則PB與PA有什么關系?
(3)∠A可能等于45°嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)當m=-1時,求A∪B;
(2)若AB,求實數(shù)m的取值范圍;
(3)若A∩B=,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知D,E,F分別為△ABC的邊BC,CA,AB的中點,記 =a , =b.則下列命題中正確的個數(shù)是( )
① = a-b;② =a+ b;③ = a+ b;④ 0.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)判斷并證明f(x)的奇偶性;
(2)求證: ;
(3)已知a,b∈(﹣1,1),且 , ,求f(a),f(b)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga (a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(1)求f(0)的值和實數(shù)m的值;
(2)當m=1時,判斷函數(shù)f(x)在(﹣1,1)上的單調性,并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com