已知三棱錐S—ABC的底面是正三角形,A點在側(cè)面SBC上的射影H是△SBC的垂心.

(1)求證:BC⊥SA

(2)若S在底面ABC內(nèi)的射影為O,證明:O為底面△ABC的中心;

(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱錐S—ABC的體積.

 

【答案】

(1)先證明 (2) 先證O為底面△ABC的垂心 (3)

【解析】

試題分析:證明:(1) AH⊥面SBC,BC在面SBC內(nèi)   ∴AH⊥BC

 

,同理,因此

 

 

O為底面△ABC的垂心,而三棱錐S—ABC的底面是正三角形,故O為底面△ABC的中心

 (3)由(1)有SA=SB=SC=,設(shè)CO交AB于F,則CF⊥AB, CF是EF在面ABC內(nèi)的射影,

EF⊥AB,

∠EFC為二面角H—AB—C的平面角,∠EFC=30°,∠ECF=60°,

OC=,SO=3,AB=3,

  

考點:直線與平面垂直的性質(zhì);棱柱、棱錐、棱臺的體積.

點評:本題考查異面直線垂直的證明,考查三角形中心的證明,考查三棱錐體積的求法,解題時要認真審題,仔細解答,合理地化空間問題為平面問題.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知三棱錐S-ABC的各頂點都在一個半徑為r的球面上,球心O在AB上,SO⊥底面ABC,AC=
2
r
,則球的體積與三棱錐體積之比是( 。
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐S-ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2;則此棱錐的體積為
2
6
2
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐S-ABC的三條側(cè)棱兩兩垂直,且SA=2,SB=SC=4,若點P到S、A、B、C這四點的距離都是同一個值,則這個值是
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•蘭州一模)已知三棱錐S-ABC的所有頂點都在以O(shè)為球心的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,若三棱錐S-ABC的體積為
2
6
,則球O的表面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐S-ABC的四個頂點在以O(shè)為球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,則當球的表面積為400π時,點O到平面ABC的距離為(  )

查看答案和解析>>

同步練習冊答案