18.復(fù)數(shù)z=$\frac{2+3i}{1+i}$(i為虛數(shù)單位),則z的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算法則求出z=$\frac{5}{2}+\frac{1}{2}$i,從而得到$\overline{z}$=$\frac{5}{2}-\frac{1}{2}$i.由此能求出z的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點(diǎn)所在象限.

解答 解:∵z=$\frac{2+3i}{1+i}$=$\frac{(2+3i)(1-i)}{(1+i)(1-i)}$
=$\frac{2+3i-2i-3{i}^{2}}{1-{i}^{2}}$
=$\frac{5+i}{2}$=$\frac{5}{2}+\frac{1}{2}$i,
∴z的共軛復(fù)數(shù)$\overline{z}$=$\frac{5}{2}-\frac{1}{2}$i.
∴z的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點(diǎn)($\frac{5}{2},-\frac{1}{2}$)位于第四象限.
故選:D.

點(diǎn)評 本題考查z的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點(diǎn)所在象限的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意復(fù)數(shù)代數(shù)形式的乘除運(yùn)算法則的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖正方體ABCD-A1B1C1D1中,點(diǎn)E是棱A1B1的中點(diǎn),則直線AE與直線B1C所成角的余弦值為( 。
A.$\frac{\sqrt{10}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{15}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn) P(x,y)為平面區(qū)域$\left\{\begin{array}{l}x≥0\\ 2x-y≤0\\ kx-y+1≥0\end{array}\right.$內(nèi)的一個(gè)動(dòng)點(diǎn),z=|x+y|,若對滿足條件的任意點(diǎn) P都有z≤3,則k的取值范圍是( 。
A.[-1,1]B.(-∞,1]C.[0,3]D.(-∞,1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某幾何體的三視圖如圖所示,其中正視圖是邊長為1的正方形,俯視圖由兩個(gè)邊長為1的正方形組成,則此幾何體的體積是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z=$\frac{i^8}{1-i}$(其中i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓C:$\frac{{x{\;}^2}}{a^2}+\frac{{y{\;}^2}}{b^2}$=1(a>b>1)的離心率為$\frac{1}{2}$,點(diǎn)P(n,$\frac{3}{2}$)是橢圓C上一點(diǎn),F(xiàn)為橢圓C的左焦點(diǎn),若|PF|=$\frac{5}{2}$,則點(diǎn)Q(2n,0)到雙曲線$\frac{x^2}{3}-{y^2}$=1的一條漸近線的距離為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.等差數(shù)列{an}的公差為d(d<0),ai∈{1,-2,3,-4,5}(i=1,2,3),則數(shù)列{bn}中,b1=1,點(diǎn)Bn(n,bn)在函數(shù)g(x)=a•2x(a是常數(shù))的圖象上.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)若cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若集合A={x|1<x2≤5x},B={x|-2<x<2},則A∪B=(  )
A.(1,2)B.(-2,2)C.(-1,5)D.(-2,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2-4ρcosθ+1=0.
(Ⅰ)寫出直線l和曲線C的直角坐標(biāo)方程;
(Ⅱ)P是曲線C上任意一點(diǎn),求P到直線l的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案