【題目】在平面直角坐標(biāo)系中,已知橢圓的焦距為,離心率為,橢圓的右頂點(diǎn)為.

(1)求該橢圓的方程;

(2)過(guò)點(diǎn)作直線交橢圓于兩個(gè)不同點(diǎn),求證:直線的斜率之和為定值.

【答案】(1)(2)直線AP,AQ的斜率之和為定值1.

【解析】試題(1)由題意可知,離心率,求得,則,即可求得橢圓的方程;(2)則直線的方程:,代入橢圓方程,由韋達(dá)定理及直線的斜率公式,分別求得直線,的斜率,即可證明直線,的率之和為定值.

試題解析:(1)由題 所以.

所以橢圓C的方程為

(2)當(dāng)直線PQ的斜率不存在時(shí),不合題意;

當(dāng)直線PQ的斜率存在時(shí),設(shè)直線PQ的方程為,

代入

設(shè),,則:

,,,

所以,

=1.

所以直線APAQ的斜率之和為定值1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知是半圓的直徑,是將半圓圓周四等分的三個(gè)分點(diǎn)

(1)從這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成直角三角形的概率;

(2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知命題:實(shí)數(shù)滿足,命題:實(shí)數(shù)滿足方程表示的焦點(diǎn)在軸上的橢圓,且的充分不必要條件,求實(shí)數(shù)的取值范圍;

(2)設(shè)命題:關(guān)于的不等式的解集是:函數(shù)的定義域?yàn)?/span>.若是真命題,是假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的右焦點(diǎn)為,右頂點(diǎn)、上頂點(diǎn)分別為點(diǎn),

已知橢圓的焦距為,且.

(1)求橢圓的方程;

(2)若過(guò)點(diǎn)的直線交橢圓兩點(diǎn),當(dāng)面積取得最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣1,1].
(1)求m的值;
(2)若a,b,c∈R,且 =m,求證:a+2b+3c≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+alnx(a∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)g(x)=f(x)﹣2x+2x2 , 討論函數(shù)g(x)的單調(diào)性;
(3)若(2)中函數(shù)g(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),且不等式g(x1)≥mx2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過(guò)點(diǎn).

(1)求的方程;

(2)若動(dòng)點(diǎn)在直線上,過(guò)作直線交橢圓兩點(diǎn),使得,再過(guò)作直線,證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,A是函數(shù)f(x)=2x的圖象上的動(dòng)點(diǎn),過(guò)點(diǎn)A作直線平行于x軸,交函數(shù)g(x)=2x+2的圖象于點(diǎn)B,若函數(shù)f(x)=2x的圖象上存在點(diǎn)C使得△ABC為等邊三角形,則稱A為函數(shù)f(x)=2x上的好位置點(diǎn).函數(shù)f(x)=2x上的好位置點(diǎn)的個(gè)數(shù)為(

A.0
B.1
C.2
D.大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,傾斜角為的直線與橢圓相交于兩點(diǎn),且線段的中點(diǎn)為.過(guò)橢圓內(nèi)一點(diǎn)的兩條直線分別與橢圓交于點(diǎn),且滿足,其中為實(shí)數(shù).當(dāng)直線平行于軸時(shí),對(duì)應(yīng)的

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)變化時(shí),是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案