精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=Asin(ωx+)(其中x∈R,A>0,ω>0)的圖象與x軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為M(,-2).

(1)求f(x)的解析式;

(2)若x∈[0,]求函數f(x)的值域;

(3)求函數y=f(x)的圖象左移個單位后得到的函數解析式.

 

【答案】

(1)(2)[1,2](3)

【解析】(1)由與x軸的交點中,相鄰兩個交點之間的距離為可得周期得到,然后再根據圖象上一個點為M(,-2),所以,可知此M點為最低點,從而可得A=2,所以解析式為.

(2)在(1)的基礎上,由x的取值范圍,確定出的取值范圍,進而可求得f(x)的值域.

(3) 函數y=f(x)的圖象左移個單位根據左加右減的原則,可知平移后的解析式為

.

解:(1)  ……4分          (2)[1,2]  ….8分

(3)……………………12分

 

練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年江西省南昌市高一5月聯考數學卷(解析版) 題型:解答題

已知函數f(x)= (a、b為常數),且方程f(x)-x+12=0有兩個實根為x1=3,x2=4.

(1)求函數f(x)的解析式;

(2)設k>1,解關于x的不等式f(x)< .

 

查看答案和解析>>

科目:高中數學 來源:2015屆遼寧盤錦市高一第一次階段考試數學試卷(解析版) 題型:解答題

(12分)已知函數f(x)= (a,b為常數,且a≠0),滿足f(2)=1,方程f(x)=x有唯一實數解,求函數f(x)的解析式和f[f(-4)]的值.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省萊蕪市高三上學期10月測試理科數學 題型:解答題

(本小題滿分l2分)

已知函數f(x)=a

 

(1)求證:函數yf(x)在(0,+∞)上是增函數;

 

(2)f(x)<2x在(1,+∞)上恒成立,求實數a的取值范圍.

 

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖南省十二校高三第一次聯考數學文卷 題型:解答題

( (本小題滿分13分)

已知函數f(x)=(a-1)xaln(x-2),(a<1).

(1)討論函數f(x)的單調性;

(2)設a<0時,對任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2014屆黑龍江省高一期末考試文科數學 題型:解答題

(12分)已知函數f(X)=㏒a(ax-1) (a>0且a≠1)

     (1)求函數的定義域   (2)討論函數f(X)的單調性

 

查看答案和解析>>

同步練習冊答案