5.在區(qū)間[-1,1]內(nèi)隨機(jī)取兩個(gè)實(shí)數(shù)x,y,則滿足y≥x2-1的概率是$\frac{5}{6}$ .

分析 該題涉及兩個(gè)變量,故是與面積有關(guān)的幾何概型,分別表示出滿足條件的面積和整個(gè)區(qū)域的面積,最后利用概率公式解之即可

解答 解:由題意可得,在區(qū)間[-1,1]內(nèi)隨機(jī)取兩個(gè)實(shí)數(shù)x,y,對應(yīng)的區(qū)域是邊長為2的正方形,如圖,面積為4,
滿足y≥x2-1的區(qū)域?yàn)閳D中陰影部分,面積為2+${∫}_{-1}^{1}(1-{x}^{2})dx$=2+(x-$\frac{1}{3}{x}^{3}$)|${\;}_{-1}^{1}$=$\frac{10}{3}$
∴滿足y≥x2-1的概率是$\frac{\frac{10}{3}}{4}=\frac{5}{6}$.
故答案為:$\frac{5}{6}$;

點(diǎn)評 本題主要考查了與面積有關(guān)的幾何概率的求解,解題的關(guān)鍵是準(zhǔn)確求出區(qū)域的面積,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合M={x|x2+2x-8<0},N={y|y=2x},則M∩N=(  )
A.(0,4)B.[0,4)C.(0,2)D.[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面四邊形ABCD是正方形,PA=PD,且PA⊥CD.
(1)求證:平面PAD⊥底面ABCD;
(2)設(shè)$\frac{PA}{AB}$=λ,當(dāng)λ為何值時(shí)直線PA與平面PBC所成角的余弦值為$\frac{{\sqrt{5}}}{3}$?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|2x-1|.
(Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m-1(m>0)的解集為[-2,2],求實(shí)數(shù)m的值;
(Ⅱ)若不等式f(x)≤2y+$\frac{a}{{2}^{y}}$+|2x+3|,對任意的實(shí)數(shù)x,y∈R恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.我們可以將1拆分如下:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,以此類推,可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{20}$+$\frac{1}{n}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中m,n∈N*,且m<n,則函數(shù)y=$\frac{(m+n)x}{x-1}$的值域?yàn)閧y|y≠43}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若過點(diǎn)P(a,a)與曲線f(x)=xlnx相切的直線有兩條,則實(shí)數(shù)a的取值范圍是(e,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=sinωx,(ω>0)的部分圖象如圖所示,且($\overrightarrow{OP}$+$\overrightarrow{OQ}$)•$\overrightarrow{OM}$=2,則ω的值是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平面直角坐標(biāo)系xOy中,已知R(x0,y0)是橢圓$\frac{{y}^{2}}{36}$+$\frac{{x}^{2}}{18}$=1上的一點(diǎn),從原點(diǎn)O向圓R(x-x02+(y-y02=12作兩條切線,分別交橢圓于P,Q兩點(diǎn).
(1)若R點(diǎn)在第一象限,且直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,分別記為k1,k2,求k1•k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知tan(α+$\frac{π}{4}$)=-2,則tanα=3,cos2α-sin2α=-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案