【題目】已知函數(shù)).

(Ⅰ)若函數(shù)處的切線平行于直線,求實(shí)數(shù)的值;

(Ⅱ)討論上的單調(diào)性;

(Ⅲ)若存在,使得成立,求的取值范圍.

【答案】(Ⅰ); (Ⅱ)見(jiàn)解析;(Ⅲ) .

【解析】試題分析:

(Ⅰ)求出導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義,得,可解得值;

(Ⅱ),由于,可分類,分別得單調(diào)區(qū)間;

(Ⅲ)問(wèn)題可轉(zhuǎn)化為的最小值,解之可得的范圍,因此此時(shí)關(guān)鍵是求得的最小值.這可由導(dǎo)數(shù)的知識(shí)求解.

試題解析:

(Ⅰ)∵,函數(shù)處的切線平行于直線,

,∴

(Ⅱ),若,當(dāng)時(shí), 上單調(diào)遞增;

當(dāng)時(shí), ,解得, ; , ,則上單調(diào)遞減,在上單調(diào)遞增.

(Ⅲ)當(dāng)時(shí), ,則不存在,使得成立,

當(dāng)時(shí),

,則,設(shè),

,則單調(diào)遞減, ,

∴此時(shí)存在,使得成立.

綜上所述,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直線PQ與⊙O切于點(diǎn)A,AB是⊙O的弦,∠PAB的平分線AC交⊙O于點(diǎn)C,連接CB,并延長(zhǎng)與直線PQ相交于Q點(diǎn).

(1)求證:QC·ACQC2QA2;

(2)若AQ=6,AC=5,求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:橢圓與雙曲線有相同的焦點(diǎn)、,它們?cè)?/span>軸右側(cè)有兩個(gè)交點(diǎn),滿足.將直線左側(cè)的橢圓部分(含, 兩點(diǎn))記為曲線,直線右側(cè)的雙曲線部分(不含 兩點(diǎn))記為曲線.以為端點(diǎn)作一條射線,分別交于點(diǎn),交于點(diǎn)(點(diǎn)在第一象限),設(shè)此時(shí).

(1)求的方程;

(2)證明: ,并探索直線斜率之間的關(guān)系;

(3)設(shè)直線于點(diǎn),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為圓柱的軸,CD為底面直徑,E為底面圓周上一點(diǎn),AB=1,CD=2,CE=DE.
求(1)三棱錐A﹣CDE的全面積;
(2)點(diǎn)D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù), .

1)求的單調(diào)區(qū)間與極值;

2)求證:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的頂點(diǎn), 邊上的中線所在直線方程為, 邊上的高所在直線方程為. 

(1)求點(diǎn)的坐標(biāo);

(2)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接2017年“雙”,“雙”購(gòu)物狂歡節(jié)的來(lái)臨,某青花瓷生產(chǎn)廠家計(jì)劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共個(gè),生產(chǎn)一個(gè)湯碗需分鐘,生產(chǎn)一個(gè)花瓶需分鐘,生產(chǎn)一個(gè)茶杯需分鐘,已知總生產(chǎn)時(shí)間不超過(guò)小時(shí).若生產(chǎn)一個(gè)湯碗可獲利潤(rùn)元,生產(chǎn)一個(gè)花瓶可獲利潤(rùn)元,生產(chǎn)一個(gè)茶杯可獲利潤(rùn)元.

(1)使用每天生產(chǎn)的湯碗個(gè)數(shù)與花瓶個(gè)數(shù)表示每天的利潤(rùn)(元);

(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)氣象中心觀察和預(yù)測(cè):發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示,過(guò)線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過(guò)的路程s(km).
(1)當(dāng)t=4時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來(lái);
(3)若N城位于M地正南方向,且距M地650km,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到N城,如果會(huì),在沙塵暴發(fā)生后多長(zhǎng)時(shí)間它將侵襲到N城?如果不會(huì),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a<1,集合A={x|x<a﹣2或x>﹣a},集合B={x|cos(xπ)=1},全集U=R.
(1)當(dāng)a=0時(shí),求(UA)∩B;
(2)若(UA)∩B恰有2個(gè)元素,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案