已知函數(shù)f(x)=x2+2x,數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)的圖象上,且過(guò)點(diǎn)Pn(n,Sn)的切線的斜率為kn
(1)求數(shù)列{an}的通項(xiàng)公式;(2)若bn=2kn•an,求數(shù)列{bn}的前n項(xiàng)和Tn

解:(1)∵點(diǎn)Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上,
∴Sn=n2+2n,(2分)
當(dāng)n=1時(shí),a1=S1=3;(3分)
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+2n(n-1)2-2(n-1)2n+1,(5分)
當(dāng)n=1時(shí),也滿足,故an=2n+1.(6分)
(2)由f(x)=x2+2x,求導(dǎo)可得f'(x)=2x+1,∵過(guò)點(diǎn)Pn(n,Sn)的切線的斜率為kn
∴kn=2n+2.
又∵bn=2kn•an,∴bn=22n+2•(2n+1)=4(2n+1)•4n.(8分)
∴Tn=4×3×4+4×5×42+4×7×43+…+4(2n+1)•4n
由①×④可得:4Tn=4×3×42+4×5×43+4×7×44+…+4(2n+1)•4n+1
①-②可得:-3Tn=4×[3×4+2•(42+43+…+4n)-(2n+1)•4n+1](10分)
=4×[3×4+2×]∴Tn=.(12分)
分析:(1)根據(jù)點(diǎn)在函數(shù)圖象上,則點(diǎn)滿足函數(shù)解析式,得到Sn的表達(dá)式,進(jìn)而求得數(shù)列{an}的通項(xiàng)公式;
(2)根據(jù)題中條件求出kn的表達(dá)式,結(jié)合(1)求得的數(shù)列{an}的通項(xiàng)公式,即可求得數(shù)列{bn}的通項(xiàng)公式,進(jìn)而可以利用錯(cuò)位相消法求出數(shù)列{bn}的前n項(xiàng)和Tn
點(diǎn)評(píng):本題主要考查了數(shù)列的通項(xiàng)公式,以及利用錯(cuò)位相消法進(jìn)行求和,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案