二項(xiàng)式(ax-1)3的展開(kāi)式的第二項(xiàng)的系數(shù)為-3,則a的值為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:根據(jù)第二項(xiàng)的展開(kāi)式的通項(xiàng)公式求得第二項(xiàng)系數(shù)是
C
1
3
a2(-1)1
=-3,求得a的值.
解答: 解:∵二項(xiàng)式(ax-1)3展開(kāi)式的第二項(xiàng)系數(shù)是
C
1
3
a2(-1)1
=-3,求得a2=1,∴a=1或-1,
故答案為:1或-1
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax-
b
x
,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=5x-8
(1)求f(x)的解析式;
(2)若曲線y=f(x)上的任一點(diǎn)P(x0,y0)處的切線與直線x=0及直線y=x分別相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證:△AOB的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:(x+1)(x-5)≤0,命題q:1-m≤x<1+m(m>0).
(1)若p是q的充分條件,求實(shí)數(shù)m的取值范圍;
(2)若m=5,“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[0,
π
2
],求:
a
b
以及|
a
+
b
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c分別為一個(gè)三角形三邊的邊長(zhǎng),證明a2b(a-b)+b2c(b-c)+c2a(c-a)≥0,并指出等號(hào)成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知回歸直線方程
y
=bx+a,其中a=3且樣本點(diǎn)中心為(1,2),則回歸直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式
(x-a)(x-b)
x-c
≥0的解為-1≤x<2或x≥3,則點(diǎn)P(a+b,c)位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x))圖象在M(1,f(1))處切線方程為y=2x+2,f(1)+f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入k=3,則輸出S的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案