已知雙曲線C1和橢圓C2有相同的焦點F1(-c,0),F2(c,0)(c>0),兩曲線在第一象限內(nèi)的交點為P,橢圓C2與y軸負方向交點為B,且P、F2、B三點共線,F2與的比為1:2,又直線PB與雙曲線C1的另一交點為Q(如圖),若|F2Q|=,求雙曲線C1,橢圓C2的方程。
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
49 |
y2 |
24 |
1 |
e1 |
1 |
e2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:寧波2007-2008學(xué)年上學(xué)期高三數(shù)學(xué)期末聯(lián)考試卷 題型:044
已知雙曲線C1和橢圓C2:有公共的焦點,它們的離心率分別是e1和e2,且,求雙曲線C1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年浙江省寧波市高三(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com