17.已知f(x)=$\frac{a}{2}$-$\frac{3}{{2}^{x}+1}$是R上的奇函數(shù),則f(a)的值為( 。
A.$\frac{7}{6}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{2}{3}$

分析 根據(jù)函數(shù)奇偶性的性質(zhì)利用f(0)=0求出a的值,然后代入即可求解.

解答 解:∵函數(shù)f(x)是R上的奇函數(shù),
∴f(0)=0,得f(0)=$\frac{a}{2}$-$\frac{3}{2}$=0,
得a=3,
則f(x)=$\frac{3}{2}$-$\frac{3}{{2}^{x}+1}$,則f(a)=f(3)=$\frac{3}{2}$-$\frac{3}{{2}^{3}+1}$=$\frac{3}{2}$-$\frac{3}{9}$=$\frac{9}{6}-\frac{2}{6}$=$\frac{7}{6}$,
故選:A

點(diǎn)評 本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)奇偶性的性質(zhì)利用f(0)=0是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知A(1,2),B(-2,1),O為坐標(biāo)原點(diǎn),若直線l:ax+by=2與△ABO所圍成區(qū)域(包含邊界)沒有公共點(diǎn),則a-b的取值范圍為[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=4+5cost}\\{y=5+5sint}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知A,B分別是射線CM,CM(不含端點(diǎn)C)上運(yùn)動,在△ABC中,角A,B,C所對的邊分別為a,b,c.
(1)若∠MCN=$\frac{2π}{3}$,a,b,c依次成等差數(shù)列,且公差為2,求c的值;
(2)若∠MCN=$\frac{π}{3},c=\sqrt{3}$,∠ABC=θ,求a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|-2|x+1|的最大值為k.
(1)求k的值;
(2)若a,b,c∈R,$\frac{{{a^2}+{c^2}}}{2}+{b^2}=k$,求b(a+c)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若命題“存在x0∈R,使x02+2x0+m≤0”是假命題,則實(shí)數(shù)m的取值范圍為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.畫邊長為2的正方體ABCD-A1B1C1D1的三視圖中的正視圖時,若以△A1C1D所在的平面為投影面,則得到的正視圖面積為(  )
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}中,a1=2,an+1=$\frac{2}{{a}_{n}+1}$,設(shè)bn=$\frac{{a}_{n}-1}{{a}_{n}+2}$n∈N*
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)的和為Sn,求證:bnSn≤$\frac{1}{16}$(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義域?yàn)镽的函數(shù)f(x)滿足f(x+3)=2f(x),當(dāng)x∈[-1,2)時,f(x)=$\left\{{\begin{array}{l}{{x^2}+x,x∈[-1,0)}\\{-{{(\frac{1}{2})}^{|x-1|}},x∈[0,2)}\end{array}}$.
若存在x∈[-4,-1),使得不等式t2-3t≥4f(x)成立,則實(shí)數(shù)t的取值范圍是(-∞,1]∪[2,+∞).

查看答案和解析>>

同步練習(xí)冊答案