16.已知x,y滿足$\left\{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}\right.$,目標(biāo)函數(shù)z=1-2x-y的最大值為a,最小值為b,則a-b=( 。
A.10B.12C.14D.16

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義進(jìn)行求解即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖,
由z=1-2x-y得y=1-2x-z,
平移直線y=1-2x-z,當(dāng)直線y=1-2x-z經(jīng)過(guò)點(diǎn)B時(shí),直線y=1-2x-z的截距最大,此時(shí)z最小,
由$\left\{\begin{array}{l}{x+2y=4}\\{x-y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即B(2,1),此時(shí)b=z=1-4-1=-4,
當(dāng)直線y=1-2x-z經(jīng)過(guò)點(diǎn)A時(shí),直線y=1-2x-z的截距最小,此時(shí)z最大,
由$\left\{\begin{array}{l}{x=-2}\\{x-y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=-2}\\{y=-3}\end{array}\right.$,即A(-2,-3),此時(shí)a=z=1+4+3=8,
則a-b=8-(-4)=8+4=12,
故選:B

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)利用數(shù)形結(jié)合求出目標(biāo)函數(shù)的最值是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若函數(shù)f(x)=sin(ωx+$\frac{π}{6}$)(ω>0),滿足f(0)=f($\frac{π}{3}$),且函數(shù)在[0,$\frac{π}{2}$]上有且只有一個(gè)零點(diǎn),則f(x)的最小正周期為(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.集合A={x|x2-x-2=0},B={x|x2+x+m=0},若A∩B≠∅,則m的值為(  )
A.-6或6B.0或6C.0或-6D.0或±6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求cos$\frac{7}{6}$π+sin$\frac{2}{3}$π-cos$\frac{8}{3}$π+sin$\frac{13}{6}$π+cos$\frac{17}{6}$π的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.等差數(shù)列{an}中,已知通項(xiàng)公式an=3n-2,則S20=(  )
A.390B.590C.780D.295

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2,左、右頂點(diǎn)分別為A、B,P是橢圓上一點(diǎn),記直線PA、PB的斜率為k1,k2,且k1k2=-$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m(k≠0)與橢圓C交于M、N兩點(diǎn),以M、N為直徑的圓經(jīng)過(guò)原點(diǎn),且線段MN的垂直平分線在y軸上的截距為-$\frac{1}{5}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知A,B是銳角三角形的兩個(gè)內(nèi)角,則復(fù)數(shù)(sinA-cosB)+(sinB-cosA)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.二項(xiàng)式${({\frac{x}{{\sqrt{2}}}-y})^8}$的展開式中,x4y4與x2y6項(xiàng)的系數(shù)之和是$\frac{63}{2}$(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.考生甲填報(bào)某高校專業(yè)意向,打算從5個(gè)專業(yè)中挑選3個(gè),分別作為第一、第二、第三志愿,則不同的填法有(  )
A.10種B.60種C.125種D.243種

查看答案和解析>>

同步練習(xí)冊(cè)答案