分析 (1)利用底面ABCD為平行四邊形,點(diǎn)M,N,Q分別是PA,BD,PD的中點(diǎn)上,連接AC,可得MN是三角形ACP的中位線,可得MN∥PC.
(2)面面平行轉(zhuǎn)化為線線平行,證明一個(gè)平面內(nèi)的兩天直線分別平行另一個(gè)平面,并且這兩條直線要相交,求利用三角形ADP的中位線MQ∥PB,MN∥PC,可得平面MNQ∥平面PBC.
解答 解:(1)由題意:P-ABCD是四棱錐,底面ABCD為平行四邊形,點(diǎn)M,N,Q分別是PA,BD,PD的中點(diǎn)上,連接AC,∴N是AC的中點(diǎn).
∴MN是三角形ACP的中位線,
∴MN∥PC.
(2)由(1)可得MN∥PC.
∵M(jìn),Q分別在PA,PD的中點(diǎn)上,
∴MQ是三角形ADP的中位線,
∴MQ∥PB.
由MQ∥PB,MN∥PC,PB?平面PBC,PC?平面PBC,PB∩PC=P,
同理MQ?平面MNQ,MN?平面MNQ,MQ∩MN=M.
∴平面MNQ∥平面PBC.
點(diǎn)評 本題考察了線線平行和面面平行的證明,利用了三角形的中位線這性質(zhì).比較基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 當(dāng)x>0時(shí),y隨x的增大而增大 | B. | 當(dāng)x=2時(shí),y有最大值-3 | ||
C. | 圖象的頂點(diǎn)坐標(biāo)為(-2,-7) | D. | 圖象與x軸有兩個(gè)交點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A?B | B. | B?A | ||
C. | A=B | D. | A 與 B 關(guān)系不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | ks4soos | C. | {a,c} | D. | {b,d} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com