已知橢圓
的離心率為
,以原點
為圓心,橢圓的短半軸長為半徑的圓與直線
相切。
(1)求橢圓
的標準方程;
(2)若直線
與橢圓
相交于
、
兩點,且
,試判斷
的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
(1)
.(2)為定值
.
試題分析:(1)由已知建立方程組,求得
.
(2)設
,由
得
,根據(jù)
,得
.應用韋達定理得到
根據(jù)
,
,
,
得到
,從而有
,計算得到
試題解析:(1)由題意知
,∴
,即
,
又
,∴
,
故橢圓的方程為
. 4分
(2)設
,由
得
,
,
.
7分
8分
,
,
,
,
12分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:
+
=1
的離心率為
,左焦點為F(-1,0),
(1)設A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線L與橢圓C交于M,N兩點,若
,求直線L的方程;
(2)橢圓C上是否存在三點P,E,G,使得S
△OPE=S
△OPG=S
△OEG=
?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:
的左、右焦點分別為
,離心率
,連接橢圓的四個頂點所得四邊形的面積為
.
(1)求橢圓C的標準方程;
(2)設
是直線
上的不同兩點,若
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,圓
與直線
相切于點
,與
正半軸交于點
,與直線
在第一象限的交點為
.點
為圓
上任一點,且滿足
,動點
的軌跡記為曲線
.
(1)求圓
的方程及曲線
的方程;
(2)若兩條直線
和
分別交曲線
于點
、
和
、
,求四邊形
面積的最大值,并求此時的
的值.
(3)證明:曲線
為橢圓,并求橢圓
的焦點坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設雙曲線C:
(a>0,b>0)的一個焦點坐標為(
,0),離心率
, A、B是雙曲線上的兩點,AB的中點M(1,2).
(1)求雙曲線C的方程;
(2)求直線AB方程;
(3)如果線段AB的垂直平分線與雙曲線交于C、D兩點,那么A、B、C、D四點是否共圓?為什么?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知圓
的圓心在坐標原點O,且恰好與直線
相切.
(1)求圓的標準方程;
(2)設點A為圓上一動點,AN
軸于N,若動點Q滿足
(其中m為非零常數(shù)),試求動點
的軌跡方程
.
(3)在(2)的結(jié)論下,當
時,得到動點Q的軌跡曲線C,與
垂直的直線
與曲線C交于 B、D兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的對稱軸為坐標軸,焦點是
,又點
在橢圓
上.
(1)求橢圓
的方程;
(2)已知直線
的斜率為
,若直線
與橢圓
交于
、
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,
為坐標原點,橢圓的右準線與
軸的交點是
.
(1)點
在已知橢圓上,動點
滿足
,求動點
的軌跡方程;
(2)過橢圓右焦點
的直線與橢圓交于點
,求
的面積的最大值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過拋物線y
2=8x的焦點F作傾斜角為135°的直線交拋物線于A,B兩點,則弦AB的長為( 。
查看答案和解析>>