已知橢圓C:的左、右焦點(diǎn)分別為,離心率,連接橢圓的四個(gè)頂點(diǎn)所得四邊形的面積為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)是直線上的不同兩點(diǎn),若,求的最小值.
(1);(2)的最小值是.

試題分析:(1)由離心率,四項(xiàng)點(diǎn)所成的四邊形面積,可得的值. (2)由橢圓的標(biāo)準(zhǔn)方程可得點(diǎn)的坐標(biāo). 設(shè).利用坐標(biāo)運(yùn)算,得出,又根據(jù)對(duì)稱性,不妨,則.
試題解析:
解:(1)由題意得:     2分
解得:4分    所以橢圓的標(biāo)準(zhǔn)方程為: 5分
(2)由(1)知,的坐標(biāo)分別為,設(shè)直線上的不同兩點(diǎn)的坐標(biāo)分別為,則、
 ,由, 8分
,不妨設(shè),則,  11分
當(dāng)時(shí)取等號(hào),所以的最小值是    12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,短軸的一個(gè)端點(diǎn)的距離等于焦距.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),是否存在直線,使得△與△的面積比值為?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn),長(zhǎng)軸的左、右端點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)過(guò)焦點(diǎn)斜率為)的直線交橢圓兩點(diǎn),弦的垂直平分線與軸相交于點(diǎn). 試問(wèn)橢圓上是否存在點(diǎn)使得四邊形為菱形?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)為F(0,),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比是∶1.
 
(1)求橢圓C的方程;
(2)若橢圓C上在第一象限的一點(diǎn)P的橫坐標(biāo)為1,過(guò)點(diǎn)P作傾斜角互補(bǔ)的兩條不同的直線PAPB分別交橢圓C于另外兩點(diǎn)A,B,求證:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

[2014·泉州模擬]已知橢圓的焦點(diǎn)是F1、F2,P是橢圓的一個(gè)動(dòng)點(diǎn),如果M是線段F1P的中點(diǎn),那么動(dòng)點(diǎn)M的軌跡是(  )
A.圓B.橢圓C.雙曲線的一支D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若雙曲線的一條漸近線與圓至多有一個(gè)交點(diǎn),則雙曲線離心
率的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出下列命題:
(1)設(shè)為兩個(gè)定點(diǎn),為非零常數(shù),,則動(dòng)點(diǎn)的軌跡為雙曲線;
(2)若等比數(shù)列的前項(xiàng)和,則必有
(3)若的最小值為2;
(4)雙曲線有相同的焦點(diǎn);
(5)平面內(nèi)到定點(diǎn)(3,-1)的距離等于到定直線的距離的點(diǎn)的軌跡是拋物線.
其中正確命題的序號(hào)是               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓E:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,焦距為2,過(guò)F1作垂直于橢圓長(zhǎng)軸的弦PQ,|PQ|為3.
(1)求橢圓E的方程;
(2)若過(guò)F1的直線l交橢圓于A,B兩點(diǎn),判斷是否存在直線l使得∠AF2B為鈍角,若存在,求出l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案