精英家教網 > 高中數學 > 題目詳情

【題目】某校為了解1000名高一新生的身體生長狀況,用系統(tǒng)抽樣法(按等距的規(guī)則)抽取40名同學進行檢查,將學生從1~1000進行編號,現已知第18組抽取的號碼為443,則第一組用簡單隨機抽樣抽取的號碼為

【答案】18
【解析】解:∵從1000名學生從中抽取一個容量為40的樣本,

∴系統(tǒng)抽樣的分段間隔為 =25,

設第一部分隨機抽取一個號碼為x,

則抽取的第18編號為x+17×25=443,∴x=18.

所以答案是18.

【考點精析】本題主要考查了簡單隨機抽樣和系統(tǒng)抽樣方法的相關知識點,需要掌握每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性.簡單隨機抽樣是其它各種抽樣形式的基礎,通常只是在總體單位之間差異程度較小和數目較少時,才采用這種方法;把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本;第一個樣本采用簡單隨機抽樣的辦法抽取才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知中心在原點的橢圓,右焦點(1,0),且過
(1)求橢圓的標準方程;
(2)求斜率為2的一組平行弦的中點軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】名學生分成兩組參加城市綠化活動,其中組布置盆盆景, 組種植棵樹苗.根據歷年統(tǒng)計,每名學生每小時能夠布置盆盆景或者種植棵樹苗.設布置盆景的學生有人,布置完盆景所需要的時間為,其余學生種植樹苗所需要的時間為(單位:小時,可不為整數).

⑴寫出、的解析式;

⑵比較、的大小,并寫出這名學生完成總任務的時間的解析式;

⑶應怎樣分配學生,才能使得完成總任務的時間最少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某桶裝水經營部每天的房租、人員工資等固定成本為200元,每桶水的進價為5元,銷售單價與日均銷售量的關系如圖所示.

銷售單價/元

6

6.5

7

7.5

8

8.5

日均銷售量/桶

480

460

440

420

400

380

請根據以上數據作出分析,這個經營部怎樣定價才能獲得最大利潤?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設過拋物線y2=4x的焦點F的直線l交拋物線于點A,B,若以AB為直徑的圓過點P(﹣1,2),且與x軸交于M(m,0),N(n,0)兩點,則mn=( )
A.3
B.2
C.﹣3
D.﹣2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解適齡公務員對開放生育二胎政策的態(tài)度,某部門隨機調查了90位三十歲到四十歲的公務員,得到如下列聯表,因不慎丟失部分數據.
(1)完成表格數據,判斷是否有99%以上的把握認為“生二胎意愿與性別有關”并說明理由;
(2)已知15位有意愿生二胎的女性公務員中有兩位來自省婦聯,該部門打算從這15位有意愿生二胎的女性公務員中隨機邀請兩位來參加座談,設邀請的2人中來自省婦聯的人數為X,求X的分布列及數學期望E(X).

男性公務員

女性公務員

總計

有意愿生二胎

15

45

無意愿生二胎

25

總計

P(k2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法不正確的是( )

A. 方程有實根函數有零點

B. 有兩個不同的實根

C. 函數上滿足,則內有零點

D. 單調函數若有零點,至多有一個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={1,3,5,7},B={x|(2x﹣1)(x﹣5)>0},則A∩(RB)( )
A.{1,3}
B.{1,3,5}
C.{3,5}
D.{3,5,7}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示, 是圓柱的母線, 是圓柱底面圓的直徑, 是底面圓周上異于的任意一點, .

(1)求證: ;

(2)求三棱錐體積的最大值,并寫出此時三棱錐外接球的表面積.

查看答案和解析>>

同步練習冊答案