如圖,在三棱錐P -ABC中,點P在平面ABC上的射影D是AC的中點.BC ="2AC=8,AB" =

(I )證明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.
(I) 通過證明AC⊥BC,進而證明BC⊥平面PAC,從而得證;
(II)

試題分析:
(Ⅰ)證明:在平面上的射影的中點,
PD⊥平面ABC,PD平面PAC
平面PAC⊥平面ABC                                                ……2分
BC=2AC=8,AB=4
,故AC⊥BC                                     ……4分
又平面PAC平面ABC=AC,BC平面ABC
BC⊥平面PAC,又BC平面PBC
平面PBC⊥平面PAC                                              ……6分
(Ⅱ)如圖所示建立空間直角坐標系,

則C(0,0,0),A(4,0,0),B(0,8,0),P(2,0,),
                                      ……8分
設平面PAB的法向量為


設平面PBC的法向量為
,

=0,=1,=-                            ……10分

二面角的平面角的余弦值為                         ……12分
點評:立體幾何問題,主要是考查學生的空間想象能力和邏輯推理能力,解決此類問題時,要緊扣相應的判定定理和性質定理,要將定理中要求的條件一一列舉出來,缺一不可,用空間向量解決立體幾何問題時,要仔細運算,適當轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖正四棱錐的底面邊長為,高,點在高上,且,記過點的球的半徑為,則函數(shù)的大致圖像是(   )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,邊長為4的正方形與正三角形所在的平面相互垂直,且
分別為、中點.

(1)求證:
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點,PA⊥平面ABCD.
(Ⅰ)求證:DF⊥平面PAF;
(Ⅱ)在棱PA上找一點G,使EG∥平面PFD,當PA=AB=4時,求四面體E-GFD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在正方體中,分別是棱,的中點,則與平面所成的角的大小是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)在三棱錐中,是邊長為4的正三角形,,、分別是、的中點;

(1)證明:平面平面
(2)求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(滿分13分)
如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形.

(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題13分)如圖1,在三棱錐PABC中,平面ABC,D為側棱PC上一點,它的正(主)視圖和側(左)視圖如圖2所示。

(1)證明:平面PBC
(2)求三棱錐DABC的體積;
(3)在的平分線上確定一點Q,使得平面ABD,并求此時PQ的長。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線l與球O有且只有一個公共點P,從直線l出發(fā)的兩個半平面截球O的兩個截面圓的半徑分別為1和.若二面角的平面角為150°,則球O的表面積為
A.B.C.D.

查看答案和解析>>

同步練習冊答案