【題目】(1)求函數(shù)在的最大值;
(2)證明:函數(shù)在有兩個極值點,且.
【答案】(1);(2)證明見解析.
【解析】
(1)利用導數(shù)求出函數(shù)在上的單調性即可;
(2)首先利用導數(shù)求出的單調性,即可得到,然后分別證明,,,然后即可證明.
(1),則在上單調遞增,
又,
所以在有唯一的零點.
當時,單調遞減;
時,單調遞增.
又,
所以在的最大值為.
(2),
則當時,單調遞增,
又,
所以在有唯一的零點,
此時,時,;時,,
所以是極小值點,不妨令.
當時,,所以;
當,設.
由(1)知, 有唯一的零點,
則時,單調遞減,即單調遞減;
時,單調遞增,即單調遞增
又,
所以在有唯一的零點,
此時時,;時,,
所以是極大值點,即,
所以在有兩個極值點,其中,,
且,由于,所以.
因為,,
所以,即.
又,所以,同理,
所以. .
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,為自然對數(shù)的底數(shù).
(Ⅰ)若為單調遞增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)當存在極小值時,設極小值點為,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x22(a+2)x+a2,g(x)=x2+2(a2)xa2+8.設H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則AB=( )
A.a22a16B.a2+2a16
C.16D.16
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知線段是過拋物線的焦點F的一條弦,過點A(A在第一象限內(nèi))作直線垂直于拋物線的準線,垂足為C,直線與拋物線相切于點A,交x軸于點T,給出下列命題:
(1);
(2);
(3).
其中正確的命題個數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】法國的數(shù)學家費馬(PierredeFermat)曾在一本數(shù)學書的空白處寫下一個看起來很簡單的猜想:當整數(shù)時,找不到滿足的正整數(shù)解.該定理史稱費馬最后定理,也被稱為費馬大定理.費馬只是留下這個敘述并且說他已經(jīng)發(fā)現(xiàn)這個定理的證明妙法,只是書頁的空白處不夠無法寫下.費馬也因此為數(shù)學界留下了一個千古的難題,歷經(jīng)數(shù)代數(shù)學家們的努力,這個難題直到1993年才由我國的數(shù)學家毛桂成完美解決,最終證明了費馬大定理的正確性.現(xiàn)任取,則等式成立的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),常數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知直線的極坐標方程為.
(1)寫出及直線的直角坐標方程,并指出是什么曲線;
(2)設是曲線上的一個動點,求點到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】武漢某商場為促進市民消費,準備每周隨機的從十個熱門品牌中抽取一個品牌送消費券,并且某個品牌被抽中后不再參與后面的抽獎,沒有抽中的品牌則繼續(xù)參加下周抽獎,假設每次抽取時各品牌被抽到的可能性相同,每次抽取也相互獨立.
(1)求某品牌到第三次才被抽到的概率;
(2)為了使更多品牌參加活動,商場做出調整,從第一周抽取后開始每周會有一個新的品牌補充進抽取隊伍,品牌A從第一周就開始參加抽獎,商場準備開展半年(按26周計算)的抽獎活動,記品牌A參與抽獎的次數(shù)為X,試求X的數(shù)學期望(精確到0.01).
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)當時,求函數(shù)的極值;
(2)若對于任意實數(shù),當時,函數(shù)的最大值為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),函數(shù).
(Ⅰ)判斷函數(shù)的單調性;
(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com