如圖,橢圓=1(ab>0)的上,下兩個(gè)頂點(diǎn)為A,B,直線ly=-2,點(diǎn)P是橢圓上異于點(diǎn)AB的任意一點(diǎn),連接AP并延長(zhǎng)交直線l于點(diǎn)N,連接PB并延長(zhǎng)交直線l于點(diǎn)M,設(shè)AP所在的直線的斜率為k1,BP所在的直線的斜率為k2.若橢圓的離心率為,且過(guò)點(diǎn)A(0,1).

(1)求k1·k2的值;
(2)求MN的最小值;
(3)隨著點(diǎn)P的變化,以MN為直徑的圓是否恒過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn);如不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
(1)(2)4(3)恒過(guò)定點(diǎn)(0,-2±2)
(1)因?yàn)?i>e=,b=1,解得a=2,所以橢圓C的標(biāo)準(zhǔn)方程為y2=1.(2分)

設(shè)橢圓上點(diǎn)P(x0y0),有=1,
所以k1·k2.(4分)
(2)因?yàn)?i>M,N在直線ly=-2上,設(shè)M(x1,-2),N(x2,-2),
由方程知y2=1知,A(0,1),B(0,-1),
所以KBM·kAN,(6分)
又由(1)知kAN·kBMk1·k2=-,所以x1x2=-12,(8分)
不妨設(shè)x1<0,則x2>0,則
MN=|x1x2|=x2x1x2≥2=4,
所以當(dāng)且僅當(dāng)x2=-x1=2時(shí),MN取得最小值4.(10分)
(3)設(shè)M(x1,-2),N(x2,-2),
則以MN為直徑的圓的方程為
(xx1)(xx2)+(y+2)2=0,(12分)
x2+(y+2)2-12-(x1x2)x=0,若圓過(guò)定點(diǎn),
則有x=0,x2+(y+2)2-12=0,解得x=0,y=-2±2,
所以,無(wú)論點(diǎn)P如何變化,以MN為直徑的圓恒過(guò)定點(diǎn)(0,-2±2).(16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓短軸的一個(gè)端點(diǎn)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線交橢圓、兩點(diǎn),若.求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知離心率為的橢圓()過(guò)點(diǎn) 
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作斜率為直線與橢圓相交于兩點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

己知橢圓C:(a>b>0)的右焦點(diǎn)為F(1,0),點(diǎn)A(2,0)在橢圓C上,過(guò)F點(diǎn)的直線與橢圓C交于不同兩點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)直線斜率為1,求線段的長(zhǎng);
(3)設(shè)線段的垂直平分線交軸于點(diǎn)P(0,y0),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)橢圓Γ=1(ab>0)右焦點(diǎn)F2的直線交橢圓于A,B兩點(diǎn),F1為其左焦點(diǎn),已知△AF1B的周長(zhǎng)為8,橢圓的離心率為.
(1)求橢圓Γ的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓Γ恒有兩個(gè)交點(diǎn)PQ,且?若存在,求出該圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知AB是橢圓=1(ab>0)和雙曲線=1(a>0,b>0)的公共頂點(diǎn).P是雙曲線上的動(dòng)點(diǎn),M是橢圓上的動(dòng)點(diǎn)(P、M都異于AB),且滿足λ(),其中λ∈R,設(shè)直線AP、BPAM、BM的斜率分別記為k1、k2、k3k4,k1k2=5,則k3k4=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)橢圓C=1(ab>0)恒過(guò)定點(diǎn)A(1,2),則橢圓的中心到準(zhǔn)線的距離的最小值________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知?jiǎng)狱c(diǎn)在橢圓+=1上,若A點(diǎn)的坐標(biāo)為(3,0),,且,則的最小值為_(kāi)_______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線的準(zhǔn)線與雙曲線 交于,兩點(diǎn),點(diǎn)為拋物線的焦點(diǎn),若△為直角三角形,則的值為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案