已知直線l,m,平面α,且m?α,那么“l(fā)∥m”是“l(fā)∥α”的


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充要條件
  4. D.
    既不充分也不必要條件
D
分析:先證明由“l(fā)∥m”證明“l(fā)∥α”,是否成立,再證明“l(fā)∥α”成立時“l(fā)∥m”是否成立,然后根據(jù)充分條件必要條件的定義進行判斷正確選項即可.
解答:證明:直線l,m,平面α,且m?α,若l∥m,當l?α時,l∥α,當l?α時不能得出結論,故充分性不成立,
若l∥α,過l作一個平面β,若α∩β=m時,則有l(wèi)∥m,否則l∥m不成立,故必要性也不成立,
由上證知“l(fā)∥m”是“l(fā)∥α”的既不充分也不必要條件
故選D.
點評:本題考查空間中線面平行的判斷定理與性質定理及充分性必要性的概念,涉及到的知識點較多,有一定的綜合性,證明時要注意證明的格式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

3、已知直線l,m,平面α,β且l⊥α,m?β,給出下列四個命題中,正確命題的個數(shù)為( 。
(1)若α∥β,則l⊥m(2)若l⊥m,則α∥β(3)若α⊥β,則l⊥m(4)若l∥m,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

5、已知直線l、m,平面α、β,則下列命題中假命題是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

5、已知直線l、m,平面α、β,則下列命題中假命題是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l,m,平面α,β,且l⊥α,m?β,給出四個命題:其中真命題的個數(shù)是( 。
①若α∥β,則l⊥m;
②若l⊥m,則α∥β;
③若α⊥β,則l∥m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•門頭溝區(qū)一模)已知直線l,m,平面α,且m?α,那么“l(fā)∥m”是“l(fā)∥α”的( 。

查看答案和解析>>

同步練習冊答案