分析 通過將點(4,2)代入函數(shù)方程可求出參數(shù)a=$\frac{1}{2}$,進而可求出函數(shù)解析式,通過裂項、并項相加可知Sn=$\sqrt{n+1}$-1,代入計算即得結(jié)論.
解答 解:∵函數(shù) f (x)=xa的圖象過點 (4,2),
∴f(4)=4a=2,即a=$\frac{1}{2}$,即f(x)=$\sqrt{x}$,
∴an=$\frac{1}{f(n+1)+f(n)}$=$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}$-$\sqrt{n}$,n∈N*,
∴Sn=($\sqrt{2}$-1)+($\sqrt{3}$-$\sqrt{2}$)+…+($\sqrt{n+1}$-$\sqrt{n}$)=$\sqrt{n+1}$-1,
∴S99=$\sqrt{99+1}$-1=9,
故答案為:9.
點評 本題考查數(shù)列的通項及前n項和,考查裂項相消法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | -2i | D. | 2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,0] | B. | [1,2] | C. | [0,1] | D. | (-∞,1]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,5) | B. | [2,5] | C. | (2,5] | D. | [2,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.50 | B. | 0.60 | C. | 0.70 | D. | 0.80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10份 | B. | 20份 | C. | 30份 | D. | 40份 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2k-1 | B. | 2k-1 | C. | 2k | D. | 2k+1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com